Mon.Not.R.Astron.Soc.000,1–??(2010) Printed6January2011 (MNLATEXstylefilev2.2) Chemical composition of evolved stars in the open cluster ⋆ IC 4651 1 Sˇaru¯nas Mikolaitis,1† Graˇzina Tautvaiˇsiene˙,1 Raffaele Gratton,2 Angela Bragaglia3 1 and Eugenio Carretta3 0 2 1Institute of Theoretical Physics and Astronomy, Vilnius University,Goˇstauto 12, Vilnius 01108, Lithuania 2INAF - Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy n 3INAF - Osservatorio Astronomico di Bologna, ViaRanzani 1, I-40127 Bologna, Italy a J 5 Accepted 2010.....;Received2010.....;inoriginalform2010...... ] R S ABSTRACT . Wepresentananalysisofhigh-resolutionspectraofthreecore-helium-burning‘clump’ h starsand two firstascentgiants in the opencluster IC 4651.Atmospheric parameters p - (Teff, log g, vt, and [Fe/H]) were determined in our previous study by Carretta et al. o (2004). In this study we present abundances of C, N, O and up to 24 other chemical r elements. Abundances of carbon were derived using the C2 Swan (0,1) band head at t s 5635.5˚A.Thewavelengthinterval7980–8130˚A,withstrongCNfeatures,wasanalysed a in order to determine nitrogen abundances and 12C/13C isotope ratios. The oxygen [ abundances were determined from the [Oi] line at 6300 ˚A. Compared with the Sun 1 andotherdwarfstarsoftheGalacticdisk,meanabundancesintheinvestigatedclump v stars suggest that carbon is depleted by about 0.3 dex, nitrogen is overabundant by 8 about 0.2 dex and oxygen is close to solar. This has the effect of lowering the mean 3 C/N ratio to 1.36 ± 0.11. The mean 12C/13C ratios are lowered to 16 ± 2. Other 9 investigated chemical elements have abundance ratios close to the solar ones. 0 1. Keywords: stars:abundances–stars:atmospheres–stars:horizontalbranch–open 0 clusters and associations: individual: IC 4651. 1 1 : v i 1 INTRODUCTION cluster.Theorbitaleccentricityise=0.19andthemeanra- X diusofgalactocentricorbitis8.6kpc,itsmaximumdistance This work is continuing our efforts in studying evolution- ar ary abundance alterations in evolved stars of open clusters −fro4m9◦5th6.e0G′;all=act3i4c0p.0la8n8◦e,ibs1=90−p0c7.(9α0270◦0)0.=17h24.8m,δ2000 = (Tautvaiˇsiene˙ et al. 2000, 2005; Mikolaitis et al. 2010). Our main aim is to determine detailed elemental abundances of Resultsofextensivephotometricstudieswerepublished carbon, nitrogen and oxygen, and carbon isotope 12C/13C first by Eggen (1971) and Lindoff (1972) and later on by ratiosinstarsofopenclustersinordertobetterunderstand Anthony-Twarog& Twarog (1987, 2000), Anthony-Tworag reasonsofabundancealterationscausedbystellarevolution. et al. (1988). However, the most recent photometric study Informationonabundancesofheavierchemicalelementswill wasperformedbyMeibom(2000)andMeibometal.(2002). be used for deriving the time evolution of abundances in They combined photometric observations and radial veloc- theGalacticdiskundertheBolognaOpenClusterChemical ity measurements for the 44 single member stars down to Evolution(BOCCE)study(Bragaglia&Tosi2006,Carretta V =14.5 mag and determined E(B−V)=0.10 mag, the et al.2007, andreferences therein).Inthiswork,ourtarget distance d = 1.01±0.05 kpc, and the mean radial velocity of investigations is the open cluster IC 4651. equal to −30.76±0.20 kms−1. It was found that 37% of The open cluster IC4651 is an intermediate-age giant members are spectroscopic binaries with periods up (1.7 Gyr) open cluster located 140 pc below the Galactic to 5000 days, and 52% of the main-sequence and turn-off plane and 7.1 kpc form the Galactic centre (Meibom et al. membersarebinarieswithperiodslessthan1000days.The 2002; Pasquini et al. 2004). Meibom et al. (2002) provided estimatedtotalmassofIC4651is≈630M⊙ (Meibometal. calculationsofthespacemotionandtheGalacticorbitofthe 2002). The turn-off mass of the IC4651 stars M =1.69M⊙ was obtained by Carretta et al. (2004) reading the turn-off ⋆ Based on observations collected at ESO telescopes under pro- valuesontheGirardietal.(2000)isochronesforsolarmetal- grammes65.N-0286andinpart169.D-0473 licity at the age of the cluster of 1.7 Gyr as determined by † E-mail:[email protected] Meibom et al. (2002). 2 Sˇaru¯nas Mikolaitis et al. 9 10 11 V 12 13 14 15 0.4 0.6 0.8 1.0 b - y Figure 2. Fieldof 8 x 8 arcmin2 centered on IC4651, with the programmestarsindicatedbytheirnumbersaccordingtoLindoff Figure 1. The colour-magnitude diagram of the open cluster (1972). IC4651. The stars investigated in this work are indicated by the filled squares. The stars of two other high-resolution spec- tral abundance studies are shown in this plot as well: the work of Pace et al. (2008) is marked by triangles and of Pasquini et 2 OBSERVATIONS AND METHOD OF al. (2004) – by diamonds. The diagram is based on Str¨omgren ANALYSIS photometrybyAnthony-Twarog&Twarog(2000). The spectra of five cluster stars (IC4651 27, 56, 72, 76 and 146) were obtained with the spectrograph FEROS (Fiber- fed ExtendedRangeOpticalSpectrograph) mountedat the 1.5 m telescope in La Silla (Chile). The resolving power is R = 48000 and the wavelength range is λλ 3700–8600˚A. There were several photometric studies that evaluated Three stars (27, 76, 146) belong to the red clump of the the metallicity of IC4651. Based on uvby −Hβ photome- cluster, the IC 4651 72 star is a first-ascent giant, and the try, [Fe/H] = 0.23±0.02 was found by Anthony-Twarog star 56 is an RGB-tip giant (see Fig. 1). The finding chart & Twarog (1987), [Fe/H] = 0.18±0.05 by Nissen (1988), of the investigated stars is shown in Fig. 2. The log of ob- and [Fe/H]=0.077±0.012 by Anthony-Twarog & Twarog servations and S/N are presented in the paper by Carretta (2000). at al. (2004). Highresolution spectroscopicdatastartedtoappearin InthesamepaperbyCarrettaetal.(2004),allthemain thebeginningofthemillennium.Bragaglia etal.(2001) de- atmospheric parameters for the observed stars were deter- terminedthemeanmetallicityoffiveevolvedstars[Fe/H]= mined. For the convenience we present them in this paper 0.16 ± 0.01. Pasquini et al. (2004) provided the cluster as well (Table 1). The effective temperatures were derived metallicity [Fe/H] = 0.10 ± 0.03 from the analysis of 22 byminimizingtheslopeoftheabundancesfromneutralFei faint main sequence stars of the cluster. Abundances of lineswithrespecttotheexcitationpotential.Usingtheline- the iron peak, α-elements and lithium were investigated in depth ratios (LDR) technique, Biazzo et al. (2007) have theirstudyaswell.Carrettaetal.(2004) foundtheaverage determined higher effective temperatures for other clump [Fe/H]=0.11±0.01for5evolvedstarsofthecluster,which starsin NGC4651 andhaveraised doubtsthatthetemper- we analyse further in this our work. Pace at al. (2008) pro- ature determinations by Carretta et al. were likely too low. vided the abundance measurements of Fe, Ca, Na, Ni, Ti, Wehavecheckeddependencesoftheotherchemicalelement Al, Cr, Si for 20 solar-type stars belonging to IC4651 and lineswithrespecttotheexcitationpotentialanddidnotfind found[Fe/H]=0.12±0.05. Andfinally,Santosetal.(2009) slopes.Thus,wedonotdoubtinthecorrectnessofeffective derivedthemeanmetallicity[Fe/H]=0.15±0.02forIC4651 temperature determinations for IC4651 giants by Carretta from fivedwarf stars. et al. In our work for the open cluster IC4651, the detailed The gravities (log g) were derived by Carretta et al. abundanceanalysis of almost 30 chemical elements is done. from theiron ionization equilibrium.Inourstudywefound Abundances of such key chemical elements as 12C, 13C, N, a very good agreement between neutral and singly ionised O as well as representatives of s- and r-processes are deter- species of Cr and Ti, which strongly support the reliabil- mined. ityof theatmospheric parameters, in particular thegravity The colour-magnitude diagramme of IC4651 with the valuesderivedfromtheionizationequilibriumofFe.Themi- stars analysed in threemost comprehensive chemical abun- croturbulentvelocitiesweredeterminedassumingarelation dancestudies(Pasquinietal.2004;Paceetal.2008andthis betweenloggandvt.TheATLASmodelswithovershooting work) indicated is presented in Fig. 1. were used for the analysis. The Fei lines were restricted to 3333333333333333333333333333333333333333333333344444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444445555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555566666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666000011112222223333344455566666666777777778888990000000000000000000000000000000000000000000000111111111111222222222222222233333333333333333333334444444444444444444444444444444444444444444444444444444444444455555555555555555555555555555555555555555555555555555555555555555555555555555555555666666666666666666666666666666666666666666666666666666666667777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777888888888888888888888888888888888888888888888888888888888888888889999999999999999999999999999999999999999999999999999000000000000000000000000000000000000000000000000000000011111111111111111111111111111111111111111222222222222222222222222222222222222222222222222222222222222222222222222222222222222233333333333333333333333333333333333333333333333333333333333333333333333333333334444444444444444444444444444444444444444444444444444444455555555555555555555555555555555555555555555555555556666666666666666666666666666666666666666666666666666666666666666666666666666666666677777777777777777777777777777777777777777777777777777777777777778888888888888888888888888888888888888888888888888888888888999999999999999999999999999999999990000000000000000000000000000000000000000000000000111111111111111111111111111111111111111111111111111111111111111111111111222222222222222222222222222222222222222222222222222222223333333333333333333333333333333333333333333333344444444423572337146689048990361180056889900044458199957011111222222233333334455556666777778888888999901112222589900333455566888891111122344466778888999011222223333344444444444455555556666777777778888888888899999990000000000001111111112222223333444444444455555555666666666666677777777888888999999900000111111122222222333333333333344555555566677777888899999000000001112222222333333333333444444444444455555555555666666666777777777888888889999999999999900000000011111111111111111112222233333334444566777788888888889999000011111222333334445555666666666777788888899999999900000011122222223334444444455555666666778888888888999990001111112222333333444455555557789999999900001111111111122222222333333334444444444444555555555566666666677777888888889999999990000000000111111111111222222222222333334444444444555555567777788888888889999999000111112222333333334444556666666777777777788888899999990000000011111222222233333333444445555566677777888999000001111122222222223333333444444444444444555555566666666666667777777778888888999990000000001111122222223333333333344444445555666677778888888889999000000001111222233333333444444445555555555666667777888888900001122223333344445566777778888999000001111122223333344555556666778888888999999999900000000111111111111222222223333333344444445555555566666777777788888999900011112222222333333344444444445555555566677777788999999000000111111222222233333344455666666677788889991111111128283901552170413567440673192337240010122181468720139901233784677999120499002823358122557811393144044869044822512675611473678992907994547257958900700137266991223444556790023377025700057889135566777891112388122456667778011122289333457345701223456780134556800011223366780244567723467823446880277944466790256778900134555669991815667781120012813570035705678899689022236900112345779901122355678991456788999900122457823355678901457899000123344888990112578990011233344555556667057891123567003814744550012223455236904581335746801556356334412244567966691255671123557890134590662345569269002346782477824478949113457788812447059223799237712266757891256799668246677780056001123348990003345804467889000133677799900334556990022334572469904557789333345567001134578801111223588900122555699904669024456788902267891367790445568899245678912623478025622566788123834001246800123334450334790144699123667892467701234560134779933669122790894778977903546789018991244567788356678801222345667889901223780001112457899012378899022446904488112357889123690457789112223788991236789244900062458123344457337844567799124934670255578823445679233456789912467336900134592356682789034570178365956688234716903778356891577045993933468245789122466901233467882556677811233467899901567899011345660235569014677890135633567790677811990493369001346902378990023344567112367881560112490500236700123312568900225670056687791302344690580355023114677994.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................47636407570953590805879601586493127371250832262910212834266907690259530790228614787595725586733498493087449372128392355458394650227968851682802557469895356828982354631709003077983148340336969992343736835789252957812328038279090392872716702420942746102496279143624054302271316844311051641770032557162557713510174201383636996244915315514688952817910693706478451167810071845883614159278131676983118142679015372880349180824879947365795849382570410658714957393147250268914634740316418830882478034805514660478845141616922713714834602738925791859136571252608734602574781691481803467492615251816394006130771531804159884936562441191036769079448791139091529004159714280325638120602816353926132983484377025459260463597937683871202868661617580139537633703218346634676850378081082598179581724647807030004011167806536815335143622624277760073122598251023439654854241061213924450361818485454084776907705424321879081728195999260628630373583770996992362552083046369826127983670361622539640384356703915513098824636092161484479051565420390784884606812727880254989449330462358310047108369990985042779289889146864045636315922062163007725132452724022846243642517861863897551685817588680376603954263387076033735460016646404371265218163602611758031069137910557200249271589536944104221627471372734033825307399151536748324769572061333936818146352858851711322766761598948365547528572481618608318808428837364432277474561659680984664415890545656846787479947977596272982158034327833993428629780996182715763492801384717651181543381081086873819041079215023420343855923679541272166441758486390095778308000147790338506118008706558249550229719019330198251973828792178484715222256360463882471691523121022811048820472942240235082617222791467645627857705276639685679804306083515703944512051691321260573221605924431863399120183542541421754069277965701637655302358635546952652633602212714733348407179522133675115568529659071593615885254598537513121309173374391134433010029713602232983355226584159303739653676847082265408804144327895540854073025143590042534783610105767289367491825764363735456316080380374020296898103761191351466457658627904164203267717059460164720227722257530898943017562881526458645023041643038846581395507152894098091024171252724068261417867788637544335588829309037964870083986801421952444267508789886105977387433308644067093085618621628241365503439676452199128128244412916487525750083668886015331791464854734415188021494883623823054565993977519544579569158634684631550306542224375536576782715146128817021851468791697759928508148188573805356157826823296179731868805708523493616849582653551166844060651534027168708838090441087718044768468269282275312989933650217720375676295881114322802774955364715575199886902023658778803294928630421117125125397010422872542646139018106604170313684409430379366315869854054141830059197755-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------NNOENBBNNPCORNONERLPRPPNRZPEZPNRYTETNTROENZPEPOVFCTTCCNFSSNZZVFGCCVFCZCFNTTCCZDCCFCCMGZFFFONVDCFFCFYYNVCFCZNFMFCFCMTTFNTCTZSFCLSTFCVCFTCCNFFTYCVNTOSTFTFMTFFTFZTVCTFCNFDNTVMTMVCNTSMNTCYFCCFCFFCFYFYTFFCCCTCMVMFFYCTCZFCFFFICCTNTNCFSVFFTTCFCCZFFTCFNTOFNBCTFCCVCCFCTCTFFNTCCFFCFVSFTRVFCCFVCFFFCFFSTCNCCCTCFCCCSFCZFFFCCVFFTFTTTCNCLTFTFFFFLFSMFFTFCZFTCCCCNFCCTRMFCTFZTCNFFMCTNNFCFCFMZNFSTTSFCCTLCFNCCCRTNTTCCFNMMTCMCCZNCCCFSTFFTZFFFCFFFNSCNFFTFTFFFFCFFZFFZFZCNNCFCFCNZFZSNCTFCTFVZCNVVFFCTFTWCVVCTFVFCVVFCCYVFCFFFCYNFFTTNTFFTTNCFNCCFNNCFCFZFTCNCNFNNNFTYFFFFTFFFFNTNTFCNMTTNTFTFTFFNFNTTFTNTFZFNCFRFFTTTFCTFFNSFNCTYFNNCNNCCFCFZCTCYFCLFFNFTFFCTTNCFTNCNFFCNLTTFCNFFFCYFFCTTTCFFCCPTCNCFTTFFTNFFCFCSFCVCCFCFTCCNCFFFFCMNFPTCMFFFFFCFCCNFCCFFCCCFYFNCFFFTCCFCCFVCCFCFCZNHZCCCFSCNFYFFPCFCFCCFCCCTCCCMCCCNMCCZCPSSFCFFFLMFCTVZFFNMTFNMFTFFMFYFFMFFTMFFTMFNFFFFTFCFTTCTFFNFFNFMTCFYFTTNCFCSFFTFFNFNFFCTMFVCYCNMFSSFFCFFSCFMFNMFFFFFFFMSFAFFFFCFONFFNNCNFVNFFFCFFFFSSFVNVFVNCFFRFNFNSNCNFNFSVFCCTCFFFFFFVSSSFFFFTCSSVSNVSFTFFFFTFNNSSSTSCNFVSFTVFFFSFMCTTCFFVVVYCVFFFFGVFCTTFFVCFNNFFNFFFNTSTFFCCCCVFCTCSFSCFFNFFFFFFTFVFFFFVTFFFFFCNCCFFVNFFFBSFFNFFFFFFTCFSFFFTFFCZTFTFTFTTFVFFFFCTFTFSTFTFCFFTSCFFFFNTCFNFFMFMFFMNFFMFFNVCECNFFVCTFSFFVCFFNCFVTTCFFFFFTFFNSFFCNNVSSFZCCNVYNFTSTZNCFNSSNZVFFZSZSFTFVFNOFFOFNCCFCEFNNNNFNNFFCNFVFFNFFVVFTFFNVFFNFVSFSFFFVVSSSSFFFVFFVCTTTFVFFNNVSFVFFVFVFOSFFFTFTFNMMLSNFTVNCFFTFFSCVFFNZOFFNFNNNFFFFLFFFFNFCCTFNnurrreerreererereeeeeeereeeereaeeeeeeeeereeeeeeeeeeeereeeeeeeereeeeeeeeeeeeeeeeeeeeereeeeeeaeeeeeaeeeereeeeneeeeereeaeereeereeeeeeeeeeeeeeereereneerereereeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeereeeeeeeeeeereaeeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerreeeeeeereeeeaereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeererereerreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeneeeeeeeaeeeeeemmhihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiib____________________rdrddddrbrrdrd_mc____mm__c___m_m___m__ri_crcmmm_________crc_r_crrcc_c_iccc_ii___ci__ciiic_c_ccici_i_i______i_ii___ci_ii_u_i__i_ii_iii_ii_u_____ic__iiic____c___cc_i_bbbeebbdhbbhhbhbhbubooodirrerdeeyeeroiyredordordrreeredeieodyirdiroeoerrrrararaiierrrriiarreererioerurrorrirrrrrorerrrirarrrrirrurririiorirooaorruirrirroier_rioirrdiroriir_rirroreoroiiirireiirrririiiiiiAiiiiii_uriidiirdiorureriraoioioirirooruuirdrrrrrrrrdoodarredrorrodrrrrorrrrdforrrdoorreroarorrrirooo_iiiroiieiroiirreiooilriiioiieiiruiiiriiorrriiarirrrrriiiirurrrrrirdrriaiaroerioiiieriroiooiaiioaiiiriiaaaaaiiiiiioiiiioiiiiiroiiiiiiaoisssssddsss_d____nnnnnnnnnnngnnnnnnnnnnnnnnnnnononngnnnogg_ ______IIIIIII__II___IIII____I____III_I____I__II________I__II____II_________I___________I__________I_______I__II_______________________________________________________________________I_____________I____II_IIII__I_________I_I_II__I__________________________________________________________________________________________________________________________________IIIIIII__IIII__I____________________I___II____I____I_______________________I____I__________I_______I____I_I__I_______III_I___I___I___II_______________________I_I_______I___________I__________________I___I________________II_______I____I__II__I_II______I_______I___________________________II_I_____I__________________I_I________________I__I__I_I___I_I_________I_________I____I_________________I______I__________I__I___________________________I_I________________________I_________________________________I_______________________II___________________________________________I________________I__________I_I___I______I_____________II___I________________I_________I_II_I____I_1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_I____IIIIIIIIIIII_I___I_II__I_I__________I_________I_I_II_II___II____I__II_I__I__________I__II________________I____I___II__IIIIIIIIIIIIIIIIIIIIIII___IIIIIII__I__II_I__III_III_I_II________________IIIIIIIIIIIIII_____________IIIII__II__I_I_I_I___II_I_I_II_II______________I______I_________II__II__I_II_I_______________I__________IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII2IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_________________________________________IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 6429.89-Co_I 6430.85-Fe_I 6432.68-FeII 6436.40-Fe_I 6440.93-Mn_I 6442.94-FeII 6445.75-Zr_I 6446.40-FeII 6450.18-Co_I 6452.31-V__I 6454.99-Co_I 6455.60-Ca_I 6456.38-FeII 6464.67-Ca_I 6475.63-Fe_I 6477.85-Co_I 6481.87-Fe_I 6482.19-FeII 6482.80-Ni_I 6491.23-FeII 6494.50-Fe_I 6494.99-Fe_I 6495.74-Fe_I 6496.46-Fe_I 6496.91-BaII 6498.94-Fe_I 6508.83-Ca_I 6509.60-Fe_I 6516.08-FeII 6518.37-Fe_I 6529.18-Cr_I 6531.42-V__I 6532.88-Ni_I 6533.93-Fe_I 6537.92-Cr_I 6572.79-Ca_I 6574.25-Fe_I 6580.23-Ni_I 6581.21-Fe_I 6583.69-Si_I 6586.32-Ni_I 6587.62-C__I 6591.30-Fe_I 6592.51-Ni_I 6593.87-Fe_I 6595.86-Co_I 6598.60-Ni_I 6599.10-Ti_I 6604.59-ScII 6606.94-TiII 6608.02-Fe_I 6609.11-Fe_I 6612.19-Cr_I 66661133..7842--YFe__III 66662245..8042--VFe___II wereperformedbyspectralsynthesismethod.Thezirco-thanum,cerium,neodymiumandeuropiumabundancesThedeterminationofzirconium,yttrium,barium,lan-Allinesat6696.03A,6698.67A,7835.30Aand7836.13A.˚˚˚˚iA;andaluminumfromtheA,6319.24A,6318.715711.09˚˚˚6160.75A;magnesiumfromtheMglinesat4730.04A,˚˚ialentwidthsoftheNalinesat5688.22A,6154.23Aand˚˚i(1999).Abundancesofsodiumweredeterminedfromequiv-NLTEtakenintoaccountasdescribedbyGrattonetal.TheabundancesofNaandMgweredeterminedwithstarsthe[O]linewasnotcontaminatedbytelluriclines.itakenfromJohanssonetal.(2003).InthespectraofIC4651isotopiclinecomponents,whichblendtheoxygenline,wereden[O]lineat6300A.ThegfvaluesforNiandNi˚i5860derivedtheoxygenabundancefromsynthesisoftheforbid-forthenitrogenabundanceandC/Cratioanalysis.We1213containsstrongCNandCNfeatures,soitwasused121413140–1bandheadat5630.5A.Theinterval7980–8130A˚˚5636AintervaltocomparewithobservationsofCSwan2˚FortheCdeterminationwecalculatedthe5632–2 somedetails.Mikolaitisetal.(2010,PaperI).HerewewillremindonlyInthisworkweusedthesamemethodofanalysisasinal.Fig.3.Formoredetailsanderrorestimates,seeCarrettaetingblue-ward.Twoexamplesofspectraarepresentedinlemsoflinecrowdinganddifficultiesinthecontinuumtrac-thespectralrange5500–7000Ainordertominimizeprob-˚ Starnumbers,VandBVfromLindoff(1972)−∗ 14610.941.1447302.140.101.217610.941.1746202.260.111.217210.411.3345002.230.131.21568.951.6839500.290.341.46−2710.861.2346102.520.101.17 (mag)(mag)(K)(kms)1−efftStarVBVTlogg[A/H]v−∗ IC4651.AdoptedatmosphericparametersforobservedstarsinTable1. IC4651.Anoffsetof0.5inrelativefluxisappliedforclarity.SmallsamplesofstellarspectraofprogrammestarsinFigure3. (¯) 663066326634663666386640664266446646 FFCCFFFNCFFEFNeeeeeeeeuroiri I I IIIIIIIIIIIIII 0.5 1.0IC 4651 27 1.5 IC 4651 56 Ch e m i c linesynthesis.AhyperfinestructurefortheEulinewasalsousedfortheiiabundancesweredeterminedusingtheEulineat6645A.˚iilineswerechosen:5092A,5249Aand5319A.Theeuropium˚˚˚crowdingintheregionofneodymiumlines,onlythreeNdiieterspresentedbyDenHartog&Lawler(2003).Duetolineneodymiumabundancewasdeterminedusingatomicparam-ceriumfromtheCelinesat5274Aand6043A.The˚˚iiweredeterminedfromLalinesat6320Aand6390A,˚˚iiMashonkina&Gehren(2000).ThelanthanumabundancesfromMcWilliam(1998)andforthelineat6496Afrom˚AAand6141isotopiccompositionfortheBalinesat5853˚˚iiand6127A.Weadoptedthebariumhyperfinestructureand˚niumabundanceswerederivedusingtheZrlinesat4687A˚i C/C–2–211213Eu0.030.13–0.07iiNd0.010.13–0.04iiCe0.020.12–0.03iiLa0.030.08–0.10iiBa–0.030.14–0.02iiZr0.000.12–0.07iY0.16–0.02–0.14iiZn–0.050.07–0.07iCu0.020.03–0.06iNi0.000.07–0.05iCo0.020.05–0.07iMn0.08–0.04–0.06iCr–0.090.14–0.03iiCr0.100.00–0.06iV0.160.01–0.09iTi–0.030.13–0.06iiTi0.16–0.02–0.08iSc–0.020.13–0.05iiCa0.11–0.04–0.06iSi–0.060.07–0.02iAl0.080.00–0.03iMg0.030.00–0.03iF666666666666Na0.09–0.05–0.04e666666i I113779......034472824217O([O])–0.05–0.050.00------CNFFFCieeerir______IIIIIIN(CN)0.050.000.052C(C)–0.050.050.00 +03kms.+100K+03.Species1−eff∆∆logTg∆vt tohydrogen,[A/H][A/Fe],areoftenconsiderablysmallerthanabundancesrelativeNotethattheeffectson“relative”abundances,forexampleonthelogarithmicabundancesrelativetohydrogen,∆[A/H].changesforthestarIC465172.ThetableentriesshowtheeffectsEffectsonderivedabundancesresultingfrommodelTable2. 3alcompositionofevolvedstarsinIC4651 6677.99-Fe_I 6678.82-Co_I 6680.14-Cr_I 6687.49-Y__I 6696.02-Al_I 6696.31-Fe_I 6698.66-Al_I 6699.13-Fe_I 6703.56-Fe_I 6704.48-Fe_I 6707.78-Li_I 6709.89-Ca_I 6710.31-Fe_I 66771133..0149--FFee__II 6713.74-Fe_I 6716.23-Fe_I 6716.67-Ti_I 6721.84-Si_I 6725.35-Fe_I 6726.67-Fe_I 6732.06-Fe_I 6733.15-Fe_I 6736.52-Fe_I 6737.98-Fe_I 6739.52-Fe_I 6741.63-Si_I 6743.12-Ti_I 6745.10-Fe_I 6745.55-Ti_I 6745.96-Fe_I 6746.95-Fe_I 6750.15-Fe_I 6751.44-Cr_I 6752.71-Fe_I 6753.46-Fe_I 6762.36-Zr_I 6764.09-Fe_I 6767.78-Ni_I 6772.31-Ni_I 6783.26-Fe_I 6786.42-Fe_I 6786.86-Fe_I 6793.26-Fe_I 6794.61-Fe_I 6796.12-Fe_I 6798.47-Ca_I 6801.86-Fe_I 6804.27-Fe_I 6806.84-Fe_I 6810.26-Fe_I 6814.94-Co_I 6820.36-Fe_I 6824.84-Fe_I 6828.59-Fe_I 6833.23-Fe_I 6837.01-Fe_I 6839.83-Fe_I 6841.34-Fe_I 6842.03-Ni_I 6842.69-Fe_I 6843.65-Fe_I 666666666666666666666666666666666666666677777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777788888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888999999999999999999888888888888888888999999999999999999999900000000000000000000000000000000001111111111111111111111111112222222222222222222222222223333333333333333333444444444444444444444444444444444444444455555555555555555555556666777777777777777777888888888888888888889999999999999999900000000000000011222222222222222333333333333333334444444444444444444555555555555555566666666666666666666777777777777778888889999999999000122335668888999455555566666678889112233455677777777889900001111222223333455666667777888890001111111222333455677888990111111222222223345566888880001123555556688999000001111122334444444556666777788888999900012223444555666788881588111122344445777899000122233344455667791111233444555779900223444566799912001333444566799011233345566788890122223333445677889111225677888999900011112233357888999001111455667770247891112234467139469697083599236814557801112450238465636515001366889086901370477224440448447288990279344502790123468247028218669189048246679012456895531608455681162678115792615356001151578812070235779451368136911148115816751251017125348423687708015937756881145079027301625614955397962278527159459056629475667658523629796029288449539507758903845722761224564459340713012045576719234257866701361923645238289021278227360234818322363517988359050221399401411....................................................................................................................................................................................................................................................................................................................................................................................................................................568172112494396502562004220349559387956865593936390680392609904050813369438469411590295999544989151182471656723402693807195829571550769158792392655181671933652509207393035352753647937060520280711458046099017039624375026655281913559249677723135913760733843831081961354853896776082169813783631518726859623013451526857784391854965938176690201087781237190803068926149943936374346687401946896922890025571311981184388045668352642615404539193159687929143263102959325914765806856472702325721837114927798680476579086290267679975292439748609750963281295478336575747129348734030852885592668351325913092928457973300757361633714339980160419208061728501619790669689861485500274649805677738454955395074175442892174533762540323131185918158554004234637790514719667787448488581259700738266307800381614937893316294925629718702165366034568289750198500317999807------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------SFFFFFFFNTFFFFFCCFNFCCFFFFNFFFNSFCFCCFTFFNSFFFSSFFFFNNNSFFCFNFFTFSFEFFACCFZFFNCFCFCFNFFFFTFFFNFFFTFFFSFTTFEFNFFFNSFPSSSTFFFFFSNFEFFFFNVFFCTFAFNNNSFCFNFSFSCFFFNFCFNFFFFFFSFFTNFFFFNFFFNSFFFFFFFNNNFFFFFNNFCFNFFFFFMSSFFNFFNFFFFNFOOOFNSRFFFFSNFAAFFSNFNFMFMSFNSSSFFFTFFFSSTCFSTFSSSFCATFCCFFFFMNSFFNFCCFFFFFMMSFCSFNTFTFTTTFTFTFFFTFTTFSSTTFMFFSSFFZFSFFSFCFFSSFSNFFFFFFNFCNFTTNFTFFFNNMMNSSFFSNAAFAAFSSCACMSFCSNFFCCFOCFNCCSSCCSFCNeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiruiuibiiiiu_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiirrirriirrriiiioilo_i___iiiiiirliiirioio__iiiiiiioiiiiibilliiiooluo__aa_iai_ai_i__illllalrrirar_r_aaaa____gggggggggg_____I______________________________________________________________________________I_____________________________________________________________________________________________________________________________________II_______I____________________I______I_________I_____________I_____________I________________________________________________________________________I_________II_______I___III_II_II______________IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_II_______IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 4 Table 3.Abundancesrelativetohydrogen[El/H].Thequotederrors,σ,arethestandarddeviationsinthemeanvalueduetotheline-to-linescatterwithinthespecies.Thenumberof linesusedisindicatedbyn.Thelasttwocolumnsgivethemean[El/Fe]andstandarddeviationsfortheclusterstars27,72,76and146. Sˇ a 27 56 72 76 146 Mean r¯u n Species [El/H] σ n [El/H] σ n [El/H] σ n [El/H] σ n [El/H] σ n [El/Fe] σ a s M C(C2) –0.15 1 –0.64 1 –0.12 2 –0.17 1 –0.15 1 –0.26 0.02 i k N(CN) 0.36 0.07 24 –0.09 0.11 18 0.35 0.07 24 0.30 0.06 24 0.27 0.09 23 0.21 0.04 o O([OI]) 0.05 1 –0.27 1 0.09 1 0.16 1 0.18 1 0.01 0.06 la Nai 0.09 0.05 3 –0.25 0.02 3 0.10 0.04 3 0.10 0.05 3 0.07 0.04 3 –0.02 0.01 it i Mgi 0.05 0.07 4 –0.40 0.08 4 0.05 0.09 4 0.09 0.05 4 0.08 0.09 4 –0.04 0.03 s Ali 0.11 0.05 4 –0.22 0.07 4 0.13 0.02 4 0.17 0.04 4 0.09 0.03 4 0.02 0.03 et Sii 0.25 0.08 9 –0.35 0.09 6 0.25 0.10 8 0.20 0.07 9 0.21 0.09 9 0.12 0.03 a Cai 0.17 0.05 9 –0.28 0.08 6 0.13 0.09 10 0.17 0.09 8 0.17 0.10 8 0.05 0.04 l. Scii 0.17 0.02 9 –0.50 0.05 9 0.14 0.06 8 0.15 0.06 9 0.18 0.05 9 0.05 0.03 Tii 0.25 0.08 24 –0.20 0.07 9 0.23 0.09 24 0.18 0.08 26 0.21 0.10 28 0.11 0.03 Tiii 0.21 0.09 6 –0.30 0.09 8 0.19 0.07 7 0.23 0.09 11 0.14 0.09 11 0.08 0.04 Vi 0.20 0.07 9 –0.58 0.02 9 0.17 0.09 5 0.25 0.05 9 0.27 0.04 9 0.11 0.05 Cri 0.10 0.05 19 –0.51 0.06 11 0.08 0.09 25 0.10 0.09 24 0.10 0.09 24 –0.01 0.02 Crii 0.05 0.04 6 –0.50 0.05 6 0.00 0.09 9 0.08 0.09 6 0.07 0.04 6 –0.06 0.05 Mni 0.20 0.04 6 –0.47 0.01 6 0.21 0.05 5 0.15 0.01 6 0.18 0.06 6 0.07 0.03 Coi 0.25 0.07 8 –0.18 0.09 5 0.20 0.07 9 0.24 0.08 8 0.27 0.08 8 0.13 0.04 Nii 0.17 0.08 34 –0.25 0.10 30 0.20 0.09 34 0.17 0.07 36 0.17 0.08 36 0.07 0.01 Cui 0.05 0.06 3 –0.33 0.07 3 0.08 0.02 3 0.16 0.01 3 0.10 0.02 3 –0.01 0.05 Zni 0.00 0.06 2 –0.28 0.02 2 0.10 0.09 2 0.07 0.07 2 0.07 0.08 2 –0.05 0.03 Yii 0.07 0.05 6 –0.25 0.03 6 0.10 0.04 6 0.04 0.01 6 0.14 0.04 6 –0.02 0.05 Zri 0.03 0.08 2 –0.34 0.01 2 0.00 0.05 2 0.04 0.02 2 0.00 0.05 2 –0.09 0.03 Baii 0.03 0.03 3 –0.29 0.04 2 0.08 0.07 3 0.05 0.05 3 0.05 0.05 3 –0.06 0.01 Laii 0.18 0.02 2 –0.33 0.02 2 0.10 0.05 2 0.15 0.03 2 0.15 0.05 2 0.03 0.05 Ceii 0.22 0.08 2 –0.30 0.02 2 0.20 0.07 2 0.24 0.01 2 0.20 0.07 2 0.11 0.03 Ndii 0.27 0.08 3 –0.18 0.04 2 0.28 0.06 3 0.15 0.05 3 0.18 0.03 3 0.11 0.06 Euii 0.14 1 –0.25 1 0.10 1 0.13 1 0.10 1 0.01 0.03 C/N 1.23 1.12 1.34 1.35 1.5 1.36 0.11 12C/13C 17 14 15 14 18 16 2 Chemical composition of evolved stars in IC 4651 5 2.1 Estimation of uncertainties 1.0 The sources of uncertainty were described in detail in our Paper I. 0.9 Thesensitivityoftheabundanceestimatestochangesin theatmosphericparametersbytheassumederrors(±100K 0sity.8 for Teff, ±0.3 dex for log g and ±0.3 km s−1 for vt) is illus- en tbrlaetpedarfaomrethteersetrarroIrCsd4o65n1o7t2aff(Tecatbltehe2)a.bIutnisdsaenecnesthseartiopuosslsyi-; 0ve Int.7 ScII the element-to-iron ratios, which we use in our discussion, ati 0el.6 areevenlesssensitive.Thesensitivityofironabundancesto R stellar atmospheric parameters were described in Carretta 0.5 et al. (2004). [OI] Thescatterofthededucedlineabundancesσ,presented in Table 3, gives an estimate of the uncertainty due to the 0.4 randomerrors,e.g.incontinuumplacementandthelinepa- 6300.0 6300.2 6300.4 6300.6 6300.8 rameters (themean valueofσ is0.06). Thustheuncertain- (¯) tiesinthederivedabundancesthataretheresultofrandom errors amount to approximately thisvalue. Figure4.Fittotheforbidden[Oi]lineat6300˚AinIC465156. SinceabundancesofC,NandOareboundtogetherby The observed spectrum is shown as a solid linewith black dots. Synthetic spectra with[O/Fe]=0.3, 0.08, and0.13 areshownas themolecularequilibriuminthestellaratmosphere,wehave solidgraylines. alsoinvestigatedhowanerrorinoneofthemtypicallyaffects the abundance determination of another. ∆[O/H] = 0.10 causes∆[C/H]=0.05and∆[N/H]=−0.10,∆[C/H]=0.10 causes∆[N/H]=−0.15and∆[O/H]=0.02,∆[N/H]=0.10 Table4.Themean[El/Fe]forgiant(G)andmain-sequence(MS) hasnoeffectoneitherthecarbonortheoxygenabundances. stars of IC4651 investigated in this work, Pasquini et al. (2004) andPaceetal.(2008). Thiswork Pasquini Pace 3 RESULTS AND DISCUSSION Species [El/Fe] [El/Fe] [El/Fe] [El/Fe] The abundances relative to hydrogen [El/H]1 and σ (the G G MS MS line-to-linescatter) derivedforupto27neutralandionized Nai 0.00 0.19 –0.09 –0.03 species (including 13C) for the programme stars are listed Mgi –0.05 0.09 0.13 inTable3.Theaverageclusterabundances[El/Fe]anddis- Ali 0.03 0.07 –0.07 –0.10 persionsaboutthemeanvaluesforIC4651arepresentedin Sii 0.09 0.08 0.07 –0.02 Table 3 as well. They are calculated from the results deter- Cai 0.05 0.00 0.04 0.04 mined for the stars 27, 72, 76 and 146. Due to the differ- Scii 0.01 0.11 –0.11 ent [Fe/H], which is by 0.4 dex lower than of other cluster Tii 0.11 0.12 0.08 –0.02 stars, the star 56 was not used in the average calculations Tiii 0.07 0.18 0.00 eventhoughitsvaluesdonotchangetheaverageabundances Cri –0.05 –0.02 0.11 Nii 0.07 0.10 0.01 –0.02 much.Forthemajorityofthechemicalelementsthechanges are just ±0.01−0.02 dex, only for Sii and Scii the differ- ence is 0.04 dex, and for Vi – 0.07 dex. From its element to iron ratios, C/N and 12C/13C ratios, this star within er- Pasquinietal.(2004)investigatedspectraofbothgiants rors of uncertainties is indistinguishable from other evolved and main-sequence stars in IC4651. The authors expressed starsofthiscluster.However,wethinkthatwithmoreade- their strong believe that [Na/Fe] ratio is comprehensively quatemodelatmospheresthisstarcanbeinvestigatedmore higher in the giants in comparison to the main-sequence accurately. In Fig. 4 we show an example of spectrum syn- theses for the [Oi] line in IC465156. In Fig. 3 a sample of stars and that this is due to internal nucleosynthesis and mixing. However, neither Pace et al. (2008), neither our its spectrum is shown as well. studymayconfirmthisstatement.InTable3,wepresentthe In IC4651, the majority of investigated chemical ele- mean [El/Fe] for giant and main-sequence stars of IC4651 ments have abundance ratios close to the solar ones. The mean cluster [α/Fe] ≡ 1([Mg/Fe] + [Si/Fe] + [Ca/Fe] + investigated inourwork,Pasquiniet al.(2004) andPaceet [Ti/Fe]) = 0.06 ± 0.07 (4s.d.), which is close to the solar al. (2008). In ourwork,theabundancesof Naand Mg were determined with NLTE taken into account, and we do not value. Abundances of Nai, Ali, Sii, Cai, Tii and Nii were findan overabundanceof these chemical elements. InFig.4ofPaperI,wepresentedtheradialdistribution determined for the main-sequence stars of IC4651 by Pace ofsomeelementalabundancesforBOCCEclustersanalysed etal.(2008).Themean[El/Fe]ratiosinthesestarsarevery so far, and for others in recent studies. IC4651 agrees well close to solar as well. withresultsofotheropenclustersatthesameRgcof7.1kpc. In the following sections we will discuss in more detail 1 In this paper we use the customary spectroscopic notation the results of carbon and nitrogen abundance determina- [X/Y]≡log10(NX/NY)star−log10(NX/NY)⊙ tions. 6 Sˇaru¯nas Mikolaitis et al. ThemeannitrogentoironabundanceratioinIC4651is 1.0 [N/Fe]=0.21±0.04. Thisshowsthatnitrogen isoverabun- dant in these evolved stars of IC4651, since [N/Fe] values 0.9 in the Galactic main-sequence stars are about solar at the y C2 solar metallicity (c.f. Shi et al. 2002). Unfortunately, nei- sit0.8 thercarbon, neither nitrogen abundances were investigated n e nt in the main sequence stars of IC4651 by Pace et al. (2008) e I0.7 and Pasquini et al. (2004). ativ ThemeanC/NratiosinIC4651isequalto1.36±0.11. el0.6 Thesmallest valueof C/N=1.12 was obtained for thestar R FeI IC465156. 0.5 The12C/13Cratiosweredeterminedforallprogramme FeI starsfrom the(2,0) 13C14Nfeatureat8004.728 ˚A.InFig.6 0.4 weshowasmallregionofIC465172spectrumtogetherwith spectralsynthesesobtainedwiththreedifferentvaluesofthe 5634.0 5634.5 5635.0 5635.5 5636.0 carbonisotopicratio.Wefindthatthemean12C/13Cratios (¯) are about 16±2 in theevolved stars investigated. The solar carbon and nitrogen abundances used in our Figure 5.Small region of IC4651 27 spectrum (solid black line with black dots) at C2 Swan (0,1) band head 5635.5 ˚A, plotted work are logAC = 8.52 and logAN = 7.92 (Grevesse & together with synthetic spectra with [C/Fe] values lowered by Sauval 2000), so the solar C/N = 3.98. The 12C/13C ra- −0.2dex(lowergrayline),−0.25dex(middlegrayline)and−0.3 tio in the solar photosphere is equal to 89 (Coplen et al. (uppergrayline). 2002). 3.2 Comparison of 12C/13C and C/N ratios with 1.00 theoretical models The carbon and nitrogen abundances, C/N and especially 0.95 the carbon isotope ratios 12C/13C are key tools for stel- y lar evolution studies. Investigations of abundances of these nsit 13 14 chemical elements in atmospheres of clump stars of open nte0.90 C N clustersmayprovideacomprehensiveinformationonchem- e I icalcompositionchanges.Theclumpstarshaveaccumulated v ati0.85 all chemical composition changes that have happened dur- el ing their evolution along the giant branch and during the R helium flash. In Fig. 7 and 8, we compare the mean carbon isotope 0.80 and C/N ratios of clump stars in different open clusters as 12 14 12 14 12 14 a function of turn-off mass with the theoretical models of C N C N C N 0.75 the1st dredge-up,thermohalinemixing(TH),thermohaline 8003.0 8003.5 8004.0 8004.5 8005.0 mixing together with rotation-induced mixing for stars at (¯) the zero age main sequence (ZAMS) having rotational ve- Figure 6.Small region of IC4651 72 spectrum (solid black line locities of110kms−1,250kms−1 and 300kms−1 computed withblackdots)with13C14Nfeature.Greylinesshowsynthetic by Charbonnel & Lagarde (2010); and Cool Bottom Pro- spectra with12C/13Cratios equal to 13(lower line),15(middle cessing model (CBP) by Boothroyd & Sackman (1999). line)and17(upper line). The most resent modelling of extra-mixing processes wasdonebyCharbonnel&Lagarde(2010).Theyarebased on ideas of Eggleton et al. (2006) and Charbonnel & Zahn 3.1 Carbon and nitrogen abundances (2007).Eggletonetal.(2006)foundameanmolecularweight The average value of carbon to iron ratio in IC4651 is (µ)inversionintheir1M⊙stellarevolutionmodel,occurring [C/Fe] = −0.27±0.02. In Fig. 5, a fit to the IC4651 27 aftertheso-calledluminositybumpontheredgiantbranch, spectrum at C2 5635.5 ˚A is shown. whentheH-burningshellsourceentersthechemicallyhomo- We compared the carbon abundance in IC 4651 with geneouspartoftheenvelope.Theµ-inversionisproducedby carbonabundancesdeterminedfordwarfstarsintheGalac- thereaction3He(3He,2p)4He,aspredictedbyUlrich(1972). ticdisk.Shietal.(2002)performedanabundanceanalysisof It does not occur earlier, because the magnitude of the µ- carbonforasampleof90FandGtypemain-sequencedisk inversion is small and negligible compared to a stabilizing stars using Ci and [Ci] lines and found [C/Fe] to be about µ-stratification. Following Eggleton et al. (2006), Charbon- solar at the solar metallicity. Roughly solar carbon abun- nel & Zahn (2007) have computed stellar models including danceswerefoundbyGustafssonetal.(1999)whoanalysed theprescription byUlrich(1972) andextendedthemtothe asampleof80lateFandearlyGtypedwarfsusingthefor- case of a non-perfect gas for the turbulent diffusivity pro- bidden [Ci] line. The ratios of [C/Fe] in our stars lie about duced by that instability in a stellar radiative zone. They 0.3 dex below the values obtained for dwarf stars of the found that a doublediffusiveinstability referred to as ther- Galactic disk. mohaline convection, which has been discussed long ago in Chemical composition of evolved stars in IC 4651 7 Table 5.12C/13CandC/Nratiosalongwithturn-offmass,age,galactocentric distanceandatmosphericparametersforclumpstars Cluster Star MTO(M⊙) Age(Gyr) Rgc(kpc) Teff(K) logg [A/H] 12C/13C C/N Ref.∗ NGC752 1 1.60 2.0 8.75 5000 2.85 0.1 16 – 1 75 4900 2.85 0.1 13 – 1 77 4900 2.85 0.2 16 – 1 213 5000 2.90 0.1 14 – 1 295 5000 2.90 0.2 15 – 1 NGC2360 50 2.02 1.15 6.32 5015 2.90 –0.03 – 1.04 5 62 5105 3.15 0.12 – 1.38 5 86 4960 2.65 –0.06 – 0.93 5 12 4800 2.70 0.2 14.5 – 1 NGC2447 28 1.90 0.45 6.51 5060 2.70 –0.01 – 0.69 5 34 5120 2.90 –0.01 – 0.87 5 NGC2682 F84 1.20 5.0 9.05 4750 2.4 –0.02 20 1.15 3 F141 4730 2.4 –0.01 16 1.32 3 F151 4760 2.4 –0.03 17 1.32 3 F164 4700 2.5 0.00 18 1.62 3 F224 4710 2.4 –0.11 8 1.58 3 F226 4730 2.4 –0.02 15 1.62 3 F84 4800 2.70 0.0 11.5 – 1 F141 4800 2.70 0.0 10.5 – 1 F164 4800 2.70 0.0 10.5 – 1 NGC2714 5 2.91 0.40 8.34 5070 2.70 0.12 – 0.83 5 NGC3532 19 3.03 0.35 7.87 4995 2.65 0.11 12 1.02 5 122 5045 2.60 –0.02 – 0.93 5 596 5020 2.50 0.04 – 0.95 5 HD95879 5000 2.25 0.08 10 1.10 2 HD96174 5000 2.17 0.00 15 0.59 2 HD96175 5100 2.25 0.12 15 0.44 2 HD96445 5000 2.36 0.13 10 1.51 2 NGC5822 201 2.19 0.9 8.10 5035 2.85 0.05 13 0.87 5 316 5110 3.05 0.16 – 1.00 5 NGC 6134 39 2.34 0.7 7.6 4980 2.52 0.24 9 1.48 6 69 4950 2.83 0.11 12 1.38 6 75 5000 3.10 0.22 7 1.41 6 114 4940 2.74 0.11 6 1.05 6 129 5000 2.98 0.05 8 0.98 6 157 5050 2.92 0.16 12 1.10 6 30 4980 2.95 0.21 12 0.93 5 NGC6281 3 3.18 0.3 8.47 4915 2.30 0.01 12 0.64 5 4 5015 2.50 0.09 12 0.95 5 NGC6633 100 2.79 0.45 8.42 5015 2.85 0.11 21 0.91 5 NGC7789 K605 1.60 1.4 9.43 4860 2.4 –0.02 10 1.05 4 K665 4970 2.4 0.00 9 1.45 4 K732 4900 2.3 0.02 7 1.51 4 IC2714 5 2.85 0.40 8.34 5070 2.70 0.12 – 0.83 5 IC4651 27 1.69 1.7 7.1 4610 2.52 0.10 17 1.23 7 76 4620 2.26 0.11 14 1.35 7 146 4730 2.14 0.10 18 1.50 7 IC4756 12 2.37 0.7 7.23 5030 2.75 –0.01 11 0.91 5 14 4720 2.47 0.03 17 1.02 5 38 5075 3.00 0.05 10 1.20 5 69 5130 3.00 0.08 5 1.15 5 144 5200 3.20 0.0 18 – 1 176 5200 3.00 0.0 12 – 1 228 5000 2.90 0.0 21 – 1 296 5000 2.90 0.0 18 – 1 ∗ 1–Gilroy(1989); 2–Luck(1994); 3–Tautvaiˇsiene˙ etal.(2000); 4–Tautvaiˇsiene˙ etal.(2005); 5–Smiljanicetal.(2009); 6–Mikolaitisetal.(2010); 7–Thiswork. 8 Sˇaru¯nas Mikolaitis et al. theliterature (Stern 1960), is important in evolution of red giants. This mixing connects the convective envelope with 30 1st dredge-up theexternalwingofhydrogenburningshellandinducessur- TH face abundancemodifications in red giant stars. TH+V(110) Charbonnel &Lagarde (2010) also computedthemod- TH+V(250) els of rotation-induced mixing for stars at the zero age TH+V(300) main sequence having rotational velocities of 110kms−1, CBP 250kms−1 and 300kms−1. Typical initial ZAMS rotation 20 C velocities were chosen depending on the stellar mass based 13 C/ on observed rotation distributions in young open clusters 12 (Gaig´e 1993). The convective envelpoe was supposed to ro- tate as a solid body through the evolution. The transport coefficients for chemicals associated to thermohaline and 10 rotation-induced mixings were simply added in the diffu- sionequationandthepossibleinteractionsbetweenthetwo mechanismswerenotconsidered.Therotation-inducedmix- ingmodifiestheinternalchemicalstructureofmainsequence 1.0 1.5 2.0 2.5 3.0 3.5 4.0 stars, although its signatures are revealed only later in the M/MSun stellar evolution. Figure 7. The average carbon isotope ratios in clump stars of The models by Boothroyd & Sackmann (1999) include openclustersasafunctionofstellarturn-offmass.Theresultof the deep circulation mixing below the base of the standard this work is marked by the filled square; from Mikolaitis et al. convective envelope, and the consequent ”cool bottom pro- (2010)andTautvaiˇsiene˙ etal.(2000, 2005)–opensquares;from cessing” (CBP) of CNO isotopes. Smiljanic et al. (2009) – open triangles; from Luck (1994) – re- The theoretical models were compared to the observa- versedopentriangle;fromGilroy(1989)–opencircles.Themod- tional data of 12C/13C and C/N listed in Table 5, which elsofthe1st dredge-up,thermohalinemixing(TH)androtation- wecollectedforclumpstarsofopenclustersinvestigatedby inducedmixing(V)aretakenfromCharbonnel&Lagarde(2010). TheCBPmodelofextra-mixingistakenfromBoothroyd&Sack- Mikolaitisetal.(2010),Smiljanicetal.(2009),Tautvaiˇsiene˙ mann(1999). et al. (2000, 2005), Luck (1994) and Gilroy (1989). From Gilroy (1989) we selected 4 clusters with well defined red clumpstars.Luck(1994)derivedcarbonisotoperatiosfor8 open clusters, howeveronly one clusterwas included toour comparison since for other clusters it was very difficult to identify stars of red clump. The turn-off masses, ages and 2.5 1st dredge-up galactocentric distances were choosen from the most recent TH studies and used for displaying of other 12C/13C and C/N TH+V(110) investigations for the same cluster, if available. 2.0 TH+V(250) InFig.7and8wecanseethatforclusterswithstarsof TH+V(300) smallerturn-offmassesthe12C/13CandC/Nvaluesareina CBP 1.5 good agreement with both models of extra-mixing used for thecomparison.However,12C/13Cvaluesintheclumpstars C/N with turn-off masses of 2–3 M⊙ in most of the investigated 1.0 clusters are lower than predicted by the available models and need modelling of larger extra-mixing. 0.5 3.3 Final remarks Carbon and nitrogen are important products of nucleosyn- 1 2 3 4 thesisprocessesinstellarinteriors,andtheevidenceoftheir M/MSun abundance variation during stellar evolution is a signature of physical mixing processes between the atmosphere and Figure8.Theaveragecarbontonitrogenratiosinclumpstarsof openclustersasafunctionofstellarturn-offmass.Themeaning deeper layers of a star. Such abundance alterations may be ofsymbolsareasinFig.7. welltracedinopenclusters.Theyprovideauniquepossibil- ityforinvestigation ofanumberofstars ofnearly thesame age, distance and origin, as open cluster stars are claimed tobeformed in thesame protocloud of gas anddust.Open clusters have a high reliability of mass, distance, evolution- 1998,Grattonetal.2000,Chanam´eetal.2005, Cantiello& ary phase and abundancedeterminations. Langer 2010; Charbonnel & Lagarde 2010 for more discus- Extra-mixingprocessesmaybecomeefficientonthered sion). giantbranchwhenstarsreachtheso-calledRGBbump,and The comparison of the observational data with theo- maymodify thesurface abundances.Itisknown thatalter- retical models of stellar evolution shows that processes of ationsof12C/13Cand12C/14Nratiosdependonstellarevo- extra-mixing in stars of open clusters with turn-off masses lutionarystage,massandmetallicity (seeCharbonneletal. of 2–3 M⊙ are larger than predicted. Chemical composition of evolved stars in IC 4651 9 ACKNOWLEDGMENTS Mikolaitis Sˇ., Tautvaiˇsiene˙ G., Gratton R., Bragaglia A., Carretta E., 2010, MNRAS,407, 1866 This research has made use of Simbad, VALD and NASA Nissen P. E., 1988, A&A,199, 146 ADSdatabases.BertrandPlez(UniversityofMontpellierII) Pasquini L., Randich S., Zoccali M., Hill V., Charbonnel andGuillermoGonzalez(WashingtonStateUniversity)were C., Nordstr¨om B., 2004, A&A,424, 951 particularly generous in providing us with atomic data for Pace G., Pasquini L., Franc¸ois P., 2008, A&A,489, 403 CNandC2molecules,respectively.Sˇ.M.andG.T.weresup- SantosN.C.,LovisC.,PaceG.,MelendezJ.,NaefD.,2009, portedbytheMinistryof EducationandScienceofLithua- A&A,493, 309 nia via LitGrid programme and by the European Commis- ShiJ. R., Zhao G., Chen Y.Q., 2002, A&A,381, 982 sion via FP7 Baltic Grid II project. Smiljanic R., Gauderon R., North P., Barbuy, B., Char- bonnelC., Mowlavi N., 2009, A&A,502, 267 Stern,M. E. 1960, Tellus, 12, 172 REFERENCES Tautvaiˇsiene˙ G.EdvardssonB.,TuominenI.,IlyinI.,2000, Anthony-TwarogB.J.&TwarogB.A.,1987,AJ,94,1222 A&A,360, 499 Anthony-Twarog B. J. & Twarog B. A., 2000, AJ, 119, Tautvaiˇsiene˙ G. Edvardsson B., Puzeras E., Ilyin I., 2005, 2282 A&A,431, 933 Anthony-TwarogB.J.,MukherjeeK.,TwarogB.A.,Cald- Ulrich, R.K. 1972, ApJ,172, 165 well N., 1988, AJ, 95, 1453 Anthony-TwarogB.J.,Twarog B.A.,2000, AJ,119,2282 Boothroyd A. I., Sackmann I.J., 1999, ApJ,510, 232 Biazzo K., Pasquini L., Girardi L., Frasca A., da Silva L., Setiawan, J., Marilli, E., Hatzes, A. P., Catalano, S. Bragaglia A., Tosi M. 2006, AJ, 131, 1544 Bragaglia A., et al. 2001, AJ, 121, 327 Cantiello M. & Langer N.,2010, A&A,521, 9 CarrettaE.,BragagliaA.,GrattonR.2007,A&A,473,129 CarrettaE.,BragagliaA.,GrattonR.,TosiM.,2004,A&A, 422, 951 Chanam´eJ.,PinsonneaultM.,TerndrupD.M.,2005,ApJ, 631, 540 Charbonnel C., Brown J. A., Wallerstein G., 1998, A&A 332, 204 Charbonnel, C. & Zahn,J.-P. 2007, A&A,467, 15 Charbonnel C. & Lagarde N., 2010, A&A,522, 10 Coplen T. et al. 2002, Pure & Appl.Chem. 74:1987-2017 Den Hartog E. A., Lawler J. E., Sneden C., Cowan J. J., 2003, ApJS, 148, 543 Eggen, O. J., 1971, ApJ, 166, 87 Eggleton P. P., Dearborn D. S. P., Lattanzio J. C., 2006, Sci, 314, 1580 Gaig´e Y., 1993, A&A,269, 267 Gilroy K.K., 1989, ApJ,347, 835 GirardiL.,BressanA.,BertelliG.,ChiosiC.,2000,A&AS, 141, 371 Gratton R.G., Carretta, E., Eriksson, K., Gustafsson, B., 1999, A&A,350, 955 Gratton R.G., Sneden C., Carretta E., Bragaglia A. 2000, A&A,345, 169 GrevesseN.,SauvalA.J.,2000, “Origin ofElementsinthe SolarSystem,ImplicationsofPost-1957 Observations,O. Manuel (ed.), Kluwer, 261 Gustafsson B., Karlsson T., Olsson E., Edvardsson B., RydeN., 1999, A&A,342, 426 JohanssonS.,Litz´enU.,LundbergH.,ZhangZ.,2003,ApJ, 584, 107 Lindoff U., 1972, A&AS,7, 231 Luck R. E., 1994, ApJS,91, 309 Mashonkina L. & Gehren T, 2000, A&A,364, 249 McWilliam A. 1998, AJ, 115, 1640 Meibom S., 2000, A&A,361, 929 Meibom S., Andersen J., Nordstr¨om B., 2002, A&A, 386, 187