ebook img

Chemical Complexity via Simple Models: Modelics PDF

375 Pages·2018·21.441 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chemical Complexity via Simple Models: Modelics

Bykov,Tsybenova,Yablonsky ChemicalComplexityviaSimpleModels DeGruyterGraduate Also of Interest ChemicalSynergies. FromtheLabtoInSilicoModeling Bandeira,Tylkowski(Eds.),2018 ISBN978-3-11-048135-8,e-ISBN978-3-11-048206-5 ComputationalSciences. Ramasami(Ed.),2017 ISBN978-3-11-046536-5,e-ISBN978-3-11-046721-5 Non-equilibriumThermodynamicsandPhysicalKinetics. Bikkin,Lyapilin,2015 ISBN978-3-11-033769-3,e-ISBN978-3-11-033835-5 MathematicalChemistryandChemoinformatics. StructureGeneration,ElucidationandQuantitativeStructure-Property Relationships Kerber,Laue,Meringer,Rücker,Schymanski,2013 ISBN978-3-11-030007-9,e-ISBN978-3-11-025407-5 Valeriy I. Bykov, Svetlana B. Tsybenova, Gregory Yablonsky Chemical Complexity via Simple Models | MODELICS Authors Prof.ValeriyI.Bykov RussianAcademyofSciences EmanuelInstituteofBiochemicalPhysics KosyginStreet4/11 119334Moscow RussianFederation Dr.SvetlanaB.Tsybenova RussianAcademyofSciences EmanuelInstituteofBiochemicalPhysics KosyginStreet4/11 119334Moscow RussianFederation Prof.GregoryYablonsky SaintLouisUniversity DepartmentofChemistry 3450LindellBlvd St.LouisMO63103 UnitedStatesofAmerica ISBN978-3-11-046491-7 e-ISBN(PDF)978-3-11-046494-8 e-ISBN(EPUB)978-3-11-046514-3 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2018WalterdeGruyterGmbH,Berlin/Boston Coverimage:Pobytov/DigitalVisionVectors/gettyimages Typesetting:le-texpublishingservicesGmbH,Leipzig Printingandbinding:CPIbooksGmbH,Leck ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface Theideaofwritingthisbookwasbornin2015duringtheInternationalConference “Mathematics in (Bio)Chemical Kinetics and Engineering” (MACKiE-2015), held in Ghent (Belgium). Professors Valeriy Bykov and Grigoriy (Gregory) Yablonsky were colleagues who worked closely at the Boreskov Institute of Catalysis (Novosibirsk, Russia)formorethanadecadeinthe1970sto1980s.TheyestablishedtheSiberian chemico-mathematicalteam–togetherwithAlexanderGorbanandVladimirElokhin. They co-authored many books and articles related to the area of the mathematical modeling ofchemicalprocesses. Dr Svetlana Tsybenovajoined thisactivitylater in the1990s,enhancingitscomputationalandappliedaspects. AftergraduatingfromNovosibirskStateUniversityin1968,ValeriyBykovstarted hisscientificcareerintheDepartmentofMathematicalModelingattheBoreskovIn- stituteofCatalysis.ProfessorMikhailSlin’koandDrAlbertFedotovwerehisscientific supervisors.In1985,ValeriyBykovreceivedhisdegreeofDoctorofPhysicsandMathe- matics(PhysicalChemistry)fromtheInstituteofChemicalPhysicsinChernogolovka. GregoryYablonskyalsoworkedinthesameDepartmentofMathematicalModel- ingattheBoreskovInstituteofCatalysis(Novosibirsk),firstasapost-graduatestudent andthenasaresearcher.ProfessorMikhailSlin’kowasalsohissupervisor.In1989, GregoryYablonskyreceivedhisdegreeofDoctorofScience(PhysicalChemistry)from theBoreskovInstitute. Svetlana Tsybenova graduated from Krasnoyarsk State Technical University in 1996andreceivedherPhDinTechnicalSciencesfromthesameuniversityin1999.In 2011,shereceivedthedegreeofDoctorofPhysicsandMathematics(PhysicalChem- istry)fromBashkirStateUniversity,Ufa;herbeingadviserwasProfessorSemyonSpi- vak. In1978,therewasaremarkablemomentinthisstorywhenascientificdelegation from the USA, the three prominent professors Rutherford Aris, Dan Luss, and Har- monRay,visitedtheBoreskovInstituteinNovosibirsk.Thiswasastartingpointfor Soviet–Americancooperationinmathematicalchemistry.Unfortunately,thiscooper- ationmetmanypoliticalobstacles.Nonetheless,itbecameasignificantstimulusfor afruitfulexchangeofinformationandideas. Overthelast50years,themaindirectionsandapproacheshavebeendetermined inmathematicalchemistry,boththeoreticalandapplied.Discoveriesofnewexperi- mentalfacts,i.e.,therateofhysteresis,chemicaloscillations,chaos,etc,creatednew challengesindecodingthecomplexityofchemicalreactions.Batteriesofmathemat- icalmodelsdistinguishedbythelevelofcomplexityandassumedfactorshavebeen developedforimitatingcomplexchemicalbehavior. “Battery of models”, “zoo of models”, or “marketof models” – different meta- phorscanbeused.Nevertheless,therealalternativeincontemporarymodelingisbe- tweenthemodeltakenfromthe“market”andthatproducedbytheindividual“tailor”. https://doi.org/10.1515/9783110464948-201 VI | Preface Certainly,asuitfromthetailorismoreelegant;however,itismuchcheaperandfaster tobuyasuitinasupermarketandadaptitifnecessary. Anoptimalstrategyofmodelingcanbeformulatedasfollows: 1. todeveloptypical(“simple”)modelsfordescribingthephenomenaofourinter- est; 2. toadaptthemtoconcretephenomenaorprocesses. Aspecialquestionarose:whatisthesimplestmodeltodescribenewlydiscoveredcrit- icalphenomena?Thisbookisdevotedtobasicmodels,whichcanbeusedasbuilding blocksforconstructingthemathematicalmodelsofcomplexchemicalprocesses.We callthemethodologyofselectingandanalyzingthesemodels“modelics”.Ourbookis focusedonsimplenonlinearmodels. Generally,theconceptsof“simplicity”andthe“simplemodel”arecomplex.Ein- stein’sadvicewas:“Makeeverythingassimpleaspossiblebutnotsimple.”Onthe otherhand,LeonardodaVincisaid:“Simplicityistheultimatesophistication.”So, whenworkingwithsimplicity,wemovethroughthe“grayzone”betweenscience,art, andphilosophy,andtheinscriptiononthegatesis:“Lessismore!” The authors express their gratitude to the colleagues who provided them with help at various times and in different situations: Professors Sergey Varfolomeev, Bair Bal’zhinimaev, Alexander Gorban’, Semyon Spivak, Aizek Volpert, Konstantin Shkadinskii,SergeyReshetnikov,GeorgijMalinetskii,andZulhairMansurov. Finally,wewouldliketothankourbelovedonesfortheirsupportandunderstand- ing. ValeriyBykov,Moscow,2017 SvetlanaTsybenova,Moscow,2017 GregoryYablonsky,St.Louis,2017 Contents Preface|V PartI: Generalpart 1 Introduction.Howtodescribecomplexprocessesusingsimplemodels: Modelics|3 1.1 Model...modeling... |3 1.2 Top-downandbottom-up|4 2 Categorizationofmodels|6 2.1 Physicalframeworkofmodeldesign|6 2.1.1 Modelsoftransport|7 2.1.2 Thebatchreactor|8 2.1.3 Thecontinuousstirred-tankreactor|8 2.1.4 Theplug-flowreactor|9 2.1.5 Thepulsereactor|10 2.2 Howtosimplifycomplexmodels?Principlesofsimplification|10 2.2.1 Physicochemicalassumptionsofsimplificationof chemico-mathematicalmodels|11 2.3 Mathematicalconceptsofsimplificationinchemicalkinetics|15 2.3.1 Mathematicalstatusofthequasi-steady-state(QSS) approximation|15 2.3.2 Limitsofsimplification:optimalmodel|17 PartII: Chemicalmodelics 3 Basicmodelsofchemicalkinetics|21 3.1 Equationsofchemicalkineticsandaschemeofparametric analysis|21 3.1.1 Experimentalbackground|21 3.1.2 Equationsofchemicalkinetics|23 3.1.3 Schemeofparametricanalysis|25 3.2 Autocatalyticmodels|32 3.2.1 Autocatalytictrigger|32 3.2.2 Autocatalyticoscillators|34 3.2.3 Associationreaction|59 3.3 Catalyticschemesoftransformations|63 VIII | Contents 3.3.1 Catalytictriggers|63 3.3.2 Catalyticoscillators|72 3.4 Catalyticcontinuousstirred-tankreactor(CSTR)|84 3.4.1 Flowreactorwithanautocatalytictrigger|86 3.4.2 Flowreactorwithacatalytictrigger|89 3.4.3 Flowreactorwithanautocatalyticoscillator|93 3.4.4 Flowreactorwithacatalyticoscillator|93 3.4.5 Kinetic“chaos”inducedbynoise|94 3.5 Two-centermechanisms|96 3.5.1 Oscillator–triggermodel|96 3.5.2 Oscillator–oscillatormodel|99 3.5.3 ModelwithastepofinteractionofcentersZ1 󴀘󴀯Z2|101 3.5.4 Modelwithadiffusionchangeofinteractioncenters|102 3.6 SimplestmodelsofCOoxidationonplatinum|106 3.7 Nonidealkinetics|113 3.8 Savchenko’smodel|124 3.9 ModeloftheBelousov–Zhabotinskyreaction|130 4 Thermokineticmodels|142 4.1 Continuousstirred-tankreactors(CSTR)|142 4.2 Zel’dovich–Semenovmodel|143 4.2.1 ReactionA→P|144 4.2.2 TheoxidationreactionA+O2 →P|152 4.2.3 ReactionnA→P|157 4.2.4 ReactionA→Pwitharbitrarykinetics|162 4.2.5 Semenovdiagramasastabilitycriterion|164 4.3 Aris–Amundsonmodel|168 4.3.1 ReactionA→P|168 4.3.2 Reactionofthen-thorder|181 4.3.3 Theoxidationreaction|183 4.3.4 Reactionwitharbitrarykinetics|186 4.3.5 Andronov–Hopfbifurcations|189 4.3.6 Safeandunsafeboundariesofregionsofcriticalphenomena|194 4.4 Volter–Salnikovmodel|197 4.5 Modelsofacontinuousstirredtankreactorandatubereactor|205 4.5.1 Parametricanalysisofadimensionalmodel|206 4.5.2 Relationbetweendimensionlessanddimensionalmodels|214 4.5.3 Determinationofignitionboundaries|215 4.5.4 Continuoustubereactor|216 4.6 Combustionmodelofhydrocarbonmixture|218 4.7 Thermocatalytictriggersandoscillators|228 4.7.1 TheEley–Ridealmonomolecularmechanism|231 Contents | IX 4.7.2 TheEley–Ridealbimolecularmechanism|233 4.7.3 Thelinearcatalyticcycle|235 4.7.4 TheLangmuir–HinshelwoodMechanism|235 4.7.5 Autocatalyticschemesoftransformations|237 4.7.6 Autocatalyticoscillator|245 4.8 Parallelscheme|248 4.9 Consistentscheme|252 4.10 Onereversiblereaction|255 4.11 Modelofspontaneouscombustionofbrown-coaldust|259 4.12 ModelingofthenitrationofamylinaCSTRandatubereactor|266 4.12.1 ParametricanalysisofthemathematicalmodelofaCSTR|267 4.12.2 Modelofatubereactor|272 5 Modelsofmacrokinetics|281 5.1 Homogeneous–heterogeneousreaction|282 5.2 Modelofanimperfectlystirredcontinuousreactor|287 5.3 Dissipativestructuresontheactivesurface|291 5.4 Themodelofsorption–reaction–diffusion |299 5.5 Macrokineticsofcatalyticreactionsonsurfaces ofvariousgeometries|307 5.6 Nonlinearinteractionbetweentheactivesurfaceandbulk ofasolid|311 5.7 Modelsofwavepropagationreactions|315 5.8 MacroclustersonthecatalystsurfaceattheCOoxidationonPt|319 5.9 Modelofcokingthefeedchannelsofthefuel|322 PartIII: Modelicseverywhere 6 Modelsofpopulationdynamics:“prey–predator”models|335 6.1 “Prey–predator”model|335 6.1.1 Nonlinearityofreproduction|336 6.1.2 Competitioninthepreypopulation|337 6.1.3 Saturationofthepredator|337 6.1.4 Competitionforthepredator|338 6.1.5 Competitionofthepreyandsaturationofthepredator|338 6.1.6 Nonlinearityofeatingofthepreybythepredatorandsaturation ofthepredator|339 6.1.7 Competitionofthepredatorforthepreyandsaturation ofthepredator|340 6.1.8 Nonlinearityofreproductionofpredatorandcompetition ofprey|340

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.