ebook img

Chemical Complexity via Simple Models PDF

375 Pages·2018·96.158 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chemical Complexity via Simple Models

Bykov,Tsybenova,Yablonsky ChemicalComplexityviaSimpleModels DeGruyterGraduate Also of Interest ChemicalSynergies. FromtheLabtoInSilicoModeling Bandeira,Tylkowski(Eds.),2018 ISBN978-3-11-048135-8,e-ISBN978-3-11-048206-5 ComputationalSciences. Ramasami(Ed.),2017 ISBN978-3-11-046536-5,e-ISBN978-3-11-046721-5 Non-equilibriumThermodynamicsandPhysicalKinetics. Bikkin,Lyapilin,2015 ISBN978-3-11-033769-3,e-ISBN978-3-11-033835-5 MathematicalChemistryandChemoinformatics. StructureGeneration,ElucidationandQuantitativeStructure-Property Relationships Kerber,Laue,Meringer,Rücker,Schymanski,2013 ISBN978-3-11-030007-9,e-ISBN978-3-11-025407-5 Valeriy I. Bykov, Svetlana B. Tsybenova, Gregory Yablonsky Chemical Complexity via Simple Models | MODELICS Authors Prof.ValeriyI.Bykov RussianAcademyofSciences EmanuelInstituteofBiochemicalPhysics KosyginStreet4/11 119334Moscow RussianFederation Dr.SvetlanaB.Tsybenova RussianAcademyofSciences EmanuelInstituteofBiochemicalPhysics KosyginStreet4/11 119334Moscow RussianFederation Prof.GregoryYablonsky SaintLouisUniversity DepartmentofChemistry 3450LindellBlvd St.LouisMO63103 UnitedStatesofAmerica ISBN978-3-11-046491-7 e-ISBN(PDF)978-3-11-046494-8 e-ISBN(EPUB)978-3-11-046514-3 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2018WalterdeGruyterGmbH,Berlin/Boston Coverimage:Pobytov/DigitalVisionVectors/gettyimages Typesetting:le-texpublishingservicesGmbH,Leipzig Printingandbinding:CPIbooksGmbH,Leck ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface Theideaofwritingthisbookwasbornin2015duringtheInternationalConference “Mathematics in (Bio)Chemical Kinetics and Engineering” (MACKiE-2015), held in Ghent (Belgium). Professors Valeriy Bykov and Grigoriy (Gregory) Yablonsky were colleagues who worked closely at the Boreskov Institute of Catalysis (Novosibirsk, Russia)formorethanadecadeinthe1970sto1980s.TheyestablishedtheSiberian chemico-mathematicalteam–togetherwithAlexanderGorbanandVladimirElokhin. They co-authored many books and articles related to the area of the mathematical modeling ofchemicalprocesses. Dr Svetlana Tsybenovajoined thisactivitylater in the1990s,enhancingitscomputationalandappliedaspects. AftergraduatingfromNovosibirskStateUniversityin1968,ValeriyBykovstarted hisscientificcareerintheDepartmentofMathematicalModelingattheBoreskovIn- stituteofCatalysis.ProfessorMikhailSlin’koandDrAlbertFedotovwerehisscientific supervisors.In1985,ValeriyBykovreceivedhisdegreeofDoctorofPhysicsandMathe- matics(PhysicalChemistry)fromtheInstituteofChemicalPhysicsinChernogolovka. GregoryYablonskyalsoworkedinthesameDepartmentofMathematicalModel- ingattheBoreskovInstituteofCatalysis(Novosibirsk),firstasapost-graduatestudent andthenasaresearcher.ProfessorMikhailSlin’kowasalsohissupervisor.In1989, GregoryYablonskyreceivedhisdegreeofDoctorofScience(PhysicalChemistry)from theBoreskovInstitute. Svetlana Tsybenova graduated from Krasnoyarsk State Technical University in 1996andreceivedherPhDinTechnicalSciencesfromthesameuniversityin1999.In 2011,shereceivedthedegreeofDoctorofPhysicsandMathematics(PhysicalChem- istry)fromBashkirStateUniversity,Ufa;herbeingadviserwasProfessorSemyonSpi- vak. In1978,therewasaremarkablemomentinthisstorywhenascientificdelegation from the USA, the three prominent professors Rutherford Aris, Dan Luss, and Har- monRay,visitedtheBoreskovInstituteinNovosibirsk.Thiswasastartingpointfor Soviet–Americancooperationinmathematicalchemistry.Unfortunately,thiscooper- ationmetmanypoliticalobstacles.Nonetheless,itbecameasignificantstimulusfor afruitfulexchangeofinformationandideas. Overthelast50years,themaindirectionsandapproacheshavebeendetermined inmathematicalchemistry,boththeoreticalandapplied.Discoveriesofnewexperi- mentalfacts,i.e.,therateofhysteresis,chemicaloscillations,chaos,etc,creatednew challengesindecodingthecomplexityofchemicalreactions.Batteriesofmathemat- icalmodelsdistinguishedbythelevelofcomplexityandassumedfactorshavebeen developedforimitatingcomplexchemicalbehavior. “Battery of models”, “zoo of models”, or “marketof models” – different meta- phorscanbeused.Nevertheless,therealalternativeincontemporarymodelingisbe- tweenthemodeltakenfromthe“market”andthatproducedbytheindividual“tailor”. https://doi.org/10.1515/9783110464948-201 VI | Preface Certainly,asuitfromthetailorismoreelegant;however,itismuchcheaperandfaster tobuyasuitinasupermarketandadaptitifnecessary. Anoptimalstrategyofmodelingcanbeformulatedasfollows: 1. todeveloptypical(“simple”)modelsfordescribingthephenomenaofourinter- est; 2. toadaptthemtoconcretephenomenaorprocesses. Aspecialquestionarose:whatisthesimplestmodeltodescribenewlydiscoveredcrit- icalphenomena?Thisbookisdevotedtobasicmodels,whichcanbeusedasbuilding blocksforconstructingthemathematicalmodelsofcomplexchemicalprocesses.We callthemethodologyofselectingandanalyzingthesemodels“modelics”.Ourbookis focusedonsimplenonlinearmodels. Generally,theconceptsof“simplicity”andthe“simplemodel”arecomplex.Ein- stein’sadvicewas:“Makeeverythingassimpleaspossiblebutnotsimple.”Onthe otherhand,LeonardodaVincisaid:“Simplicityistheultimatesophistication.”So, whenworkingwithsimplicity,wemovethroughthe“grayzone”betweenscience,art, andphilosophy,andtheinscriptiononthegatesis:“Lessismore!” The authors express their gratitude to the colleagues who provided them with help at various times and in different situations: Professors Sergey Varfolomeev, Bair Bal’zhinimaev, Alexander Gorban’, Semyon Spivak, Aizek Volpert, Konstantin Shkadinskii,SergeyReshetnikov,GeorgijMalinetskii,andZulhairMansurov. Finally,wewouldliketothankourbelovedonesfortheirsupportandunderstand- ing. ValeriyBykov,Moscow,2017 SvetlanaTsybenova,Moscow,2017 GregoryYablonsky,St.Louis,2017 Contents Preface|V PartI: Generalpart 1 Introduction.Howtodescribecomplexprocessesusingsimplemodels: Modelics|3 1.1 Model...modeling... |3 1.2 Top-downandbottom-up|4 2 Categorizationofmodels|6 2.1 Physicalframeworkofmodeldesign|6 2.1.1 Modelsoftransport|7 2.1.2 Thebatchreactor|8 2.1.3 Thecontinuousstirred-tankreactor|8 2.1.4 Theplug-flowreactor|9 2.1.5 Thepulsereactor|10 2.2 Howtosimplifycomplexmodels?Principlesofsimplification|10 2.2.1 Physicochemicalassumptionsofsimplificationof chemico-mathematicalmodels|11 2.3 Mathematicalconceptsofsimplificationinchemicalkinetics|15 2.3.1 Mathematicalstatusofthequasi-steady-state(QSS) approximation|15 2.3.2 Limitsofsimplification:optimalmodel|17 PartII: Chemicalmodelics 3 Basicmodelsofchemicalkinetics|21 3.1 Equationsofchemicalkineticsandaschemeofparametric analysis|21 3.1.1 Experimentalbackground|21 3.1.2 Equationsofchemicalkinetics|23 3.1.3 Schemeofparametricanalysis|25 3.2 Autocatalyticmodels|32 3.2.1 Autocatalytictrigger|32 3.2.2 Autocatalyticoscillators|34 3.2.3 Associationreaction|59 3.3 Catalyticschemesoftransformations|63 VIII | Contents 3.3.1 Catalytictriggers|63 3.3.2 Catalyticoscillators|72 3.4 Catalyticcontinuousstirred-tankreactor(CSTR)|84 3.4.1 Flowreactorwithanautocatalytictrigger|86 3.4.2 Flowreactorwithacatalytictrigger|89 3.4.3 Flowreactorwithanautocatalyticoscillator|93 3.4.4 Flowreactorwithacatalyticoscillator|93 3.4.5 Kinetic“chaos”inducedbynoise|94 3.5 Two-centermechanisms|96 3.5.1 Oscillator–triggermodel|96 3.5.2 Oscillator–oscillatormodel|99 3.5.3 ModelwithastepofinteractionofcentersZ1 󴀘󴀯Z2|101 3.5.4 Modelwithadiffusionchangeofinteractioncenters|102 3.6 SimplestmodelsofCOoxidationonplatinum|106 3.7 Nonidealkinetics|113 3.8 Savchenko’smodel|124 3.9 ModeloftheBelousov–Zhabotinskyreaction|130 4 Thermokineticmodels|142 4.1 Continuousstirred-tankreactors(CSTR)|142 4.2 Zel’dovich–Semenovmodel|143 4.2.1 ReactionA→P|144 4.2.2 TheoxidationreactionA+O2 →P|152 4.2.3 ReactionnA→P|157 4.2.4 ReactionA→Pwitharbitrarykinetics|162 4.2.5 Semenovdiagramasastabilitycriterion|164 4.3 Aris–Amundsonmodel|168 4.3.1 ReactionA→P|168 4.3.2 Reactionofthen-thorder|181 4.3.3 Theoxidationreaction|183 4.3.4 Reactionwitharbitrarykinetics|186 4.3.5 Andronov–Hopfbifurcations|189 4.3.6 Safeandunsafeboundariesofregionsofcriticalphenomena|194 4.4 Volter–Salnikovmodel|197 4.5 Modelsofacontinuousstirredtankreactorandatubereactor|205 4.5.1 Parametricanalysisofadimensionalmodel|206 4.5.2 Relationbetweendimensionlessanddimensionalmodels|214 4.5.3 Determinationofignitionboundaries|215 4.5.4 Continuoustubereactor|216 4.6 Combustionmodelofhydrocarbonmixture|218 4.7 Thermocatalytictriggersandoscillators|228 4.7.1 TheEley–Ridealmonomolecularmechanism|231 Contents | IX 4.7.2 TheEley–Ridealbimolecularmechanism|233 4.7.3 Thelinearcatalyticcycle|235 4.7.4 TheLangmuir–HinshelwoodMechanism|235 4.7.5 Autocatalyticschemesoftransformations|237 4.7.6 Autocatalyticoscillator|245 4.8 Parallelscheme|248 4.9 Consistentscheme|252 4.10 Onereversiblereaction|255 4.11 Modelofspontaneouscombustionofbrown-coaldust|259 4.12 ModelingofthenitrationofamylinaCSTRandatubereactor|266 4.12.1 ParametricanalysisofthemathematicalmodelofaCSTR|267 4.12.2 Modelofatubereactor|272 5 Modelsofmacrokinetics|281 5.1 Homogeneous–heterogeneousreaction|282 5.2 Modelofanimperfectlystirredcontinuousreactor|287 5.3 Dissipativestructuresontheactivesurface|291 5.4 Themodelofsorption–reaction–diffusion |299 5.5 Macrokineticsofcatalyticreactionsonsurfaces ofvariousgeometries|307 5.6 Nonlinearinteractionbetweentheactivesurfaceandbulk ofasolid|311 5.7 Modelsofwavepropagationreactions|315 5.8 MacroclustersonthecatalystsurfaceattheCOoxidationonPt|319 5.9 Modelofcokingthefeedchannelsofthefuel|322 PartIII: Modelicseverywhere 6 Modelsofpopulationdynamics:“prey–predator”models|335 6.1 “Prey–predator”model|335 6.1.1 Nonlinearityofreproduction|336 6.1.2 Competitioninthepreypopulation|337 6.1.3 Saturationofthepredator|337 6.1.4 Competitionforthepredator|338 6.1.5 Competitionofthepreyandsaturationofthepredator|338 6.1.6 Nonlinearityofeatingofthepreybythepredatorandsaturation ofthepredator|339 6.1.7 Competitionofthepredatorforthepreyandsaturation ofthepredator|340 6.1.8 Nonlinearityofreproductionofpredatorandcompetition ofprey|340

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.