ebook img

Characterizing the number of coloured $m$-ary partitions modulo $m$, with and without gaps PDF

0.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characterizing the number of coloured $m$-ary partitions modulo $m$, with and without gaps

CHARACTERIZING THE NUMBER OF COLOURED m−ARY PARTITIONS MODULO m, WITH AND WITHOUT GAPS I.P.GOULDENANDPAVELSHULDINER 7 Abstract. In a pair of recent papers, Andrews, Fraenkel and Sellers provide a complete characterization 1 forthenumberofm-arypartitionsmodulom,withandwithoutgaps. Inthispaperweextendtheseresults 0 to the case of coloured m-ary partitions, with and without gaps. Our method of proof is different, giving 2 explicitexpansionsforthegeneratingfunctionsmodulom. n a J 4 1. Introduction 2 An m-ary partition is an integer partition in which each part is a nonnegative integer power of a fixed O] integer m ≥ 2. An m-ary partition without gaps is an m-ary partition in which mj must occur as a part whenever mj+1 occurs as a part, for every nonnegative integer j. C Recently,Andrews,FraenklandSellers[AFS15]foundanexplicitexpressionthatcharacterizesthenumber . h of m-ary partitions of a nonnegative integer n modulo m; remarkably,this expression depended only on the at coefficients inthe basem representationofn. Subsequently Andrews, FraenkelandSellers[AFS16]followed m this up with a similar result for the number of m-ary partitions without gaps, of a nonnegative integer n modulom;again,theywereabletoobtaina(morecomplicated)explicitexpression,andagainthisexpression [ depended only on the coefficients in the base m representation of n. See also Edgar [E16] and Ekhad and 1 Zeilberger [EZ15] for more on these results. v The study of congruences for integer partition numbers has a long history, starting with the work of 7 7 Ramanujan(see,e.g.,[R19]). Forthespecialcaseofm-arypartitions,anumberofauthorshavestudiedcon- 0 gruenceproperties,includingChurchhouse[C69]form=2,Rødseth[R70]formaprime,andAndrews[A71] 7 for arbitrary positive integers m ≥ 2. The numbers of m-ary partitions without gaps had been previously 0 considered by Bessenrodt, Olsson and Sellers [BOS13] for m=2. . 1 In this note, we consider m-ary partitions, with and without gaps, in which the parts are coloured. To 0 specify the number of colours for parts of each size, we let k = (k ,k ,...) for positive integers k ,k ,..., 0 1 0 1 7 and say that an m-ary partition is k-coloured when there are k colours for the part mj, for j ≥ 0. This 1 j : means that there are kj different kinds of parts of the same size mj. Let b(mk)(n) denote the number of v i k-coloured m-ary partitions of n, and let c(mk)(n) denote the number of k-coloured m-ary partitions of n X without gaps. For the latter, some part mj of any colour must occur as a part whenever some part mj+1 of r any colour (not necessarily the same colour) occurs as a part, for every nonnegative integer j. a WeextendtheresultsofAndrews,FraenkelandSellersin[AFS15]and[AFS16]tothecaseofk-colouredm- arypartitions,wheremisrelativelyprime to(k −1)!andtok !forj ≥1. Ourmethodofproofisdifferent, 0 j givingexplicitexpansionsforthegeneratingfunctions modulom. Theseexpansionsdependonthefollowing simple result. Proposition 1.1. For positive integers m,a with m relatively prime to (a−1)!, we have (1−q)−a ≡(1−qm)−1m−1 a−1+ℓ qℓ (modm). a−1 ℓ=0 (cid:18) (cid:19) X Date:January26,2017. 2010 Mathematics Subject Classification. Primary05A17, 11P83;Secondary05A15. Keywords and phrases. partition,congruence, generatingfunction. TheworkofIPGwassupportedbyanNSERCDiscoveryGrant. 1 Proof. From the binomial theorem we have ∞ (1−q)−a = a−1+ℓ qℓ. a−1 ℓ=0(cid:18) (cid:19) X Now using the falling factorial notation (a−1+ℓ)a−1 =(a−1+ℓ)(a−2+ℓ)···(1+ℓ) we have a−a−1+1 ℓ =((a−1)!)−1(a−1+ℓ)a−1. (cid:18) (cid:19) But (a−1+ℓ+m)a−1 ≡(a−1+ℓ)a−1 (modm), for any integer ℓ, and ((a−1)!)−1 exists in Z since m is relatively prime to (a−1)!, which gives m a−1+ℓ+m a−1+ℓ (1) ≡ (modm), a−1 a−1 (cid:18) (cid:19) (cid:18) (cid:19) and the result follows. (cid:3) 2. Coloured m-ary partitions In this section we consider the following generating function for the numbers b(k)(n) of k-coloured m-ary m partitions: ∞ ∞ B(k)(q)= b(k)(n)qn = 1−qmj −kj. m m nX=0 jY=0(cid:16) (cid:17) The following result gives an explicit expansion for B(k)(q) modulo m. m Theorem 2.1. If m is relatively prime to (k −1)! and to k ! for j ≥1, then we have 0 j m−1 k −1+ℓ ∞ m−1 k +ℓ B(k)(q)≡ 0 0 qℓ0 j j qℓjmj (modm). m k −1  k  ℓX0=0(cid:18) 0 (cid:19) !jY=1 ℓXj=0(cid:18) j (cid:19)   Proof. Consider the finite product P = i 1−qmj −kj, i≥0. i jY=0(cid:16) (cid:17) We prove that (2) Pi ≡ m−1 k0k−1−+1ℓ0 qℓ0 1−qmi+1 −1 i m−1 kjk+ℓj qℓjmj (modm), ℓX0=0(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:18) j (cid:19)   by inductiononi. As a basecase,the resultfor i=0 followsimmediately fromProposition1.1with a=k . 0 Now assume that (2) holds for some choice of i≥0, and we obtain P = i+1 1−qmj −kj = 1−qmi+1 −ki+1P i+1 i jY=0(cid:16) (cid:17) (cid:16) (cid:17) ≡ m−1 k0−1+ℓ0 qℓ0 1−qmi+1 −ki+1−1 i m−1 kj +ℓj qℓjmj (modm) k −1  k  ℓX0=0(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:18) j (cid:19)   ≡ m−1 k0−1+ℓ0 qℓ0 1−qmi+2 −1i+1 m−1 kj +ℓj qℓjmj (modm), k −1  k  ℓX0=0(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:18) j (cid:19)   where the second last equivalence follows from the induction hypothesis, and the last equivalence follows from Proposition 1.1 with a=k +1, q =qmi+1. i+1 2 This completes the proof of (2) by induction on i, and the result follows immediately since B(k)(q)= lim P . m i→∞ i (cid:3) Now we give the explicit expression for the coefficients modulo m that follows from the above expansion of the generating function B(k)(q). m Corollary 2.2. For n≥0, suppose that the base m representation of n is given by n=d +d m+...+d mt, 0≤t. 0 1 t If m is relatively prime to (k −1)! and to k ! for j ≥1, then we have 0 j k −1+d t k +d b(k)(n)≡ 0 0 j j (modm). m k −1 k (cid:18) 0 (cid:19)j=1(cid:18) j (cid:19) Y Proof. In the expansion of the series B(k)(q) given in Theorem 2.1, the monomial qn arises uniquely with m the specializations ℓ = d , j = 0,...,t and ℓ = 0, j ≥ t. But with these specializations, we have j j j kj+ℓj = kj =1, and the result follows immediately. (cid:3) kj kj (cid:0) (cid:1) (cid:0) (cid:1) Specializing the expression given in Corollary 2.2 to the case k = 1 for j ≥ 0 provides an alternative j proofto Andrews,FraenkelandSellers’characterizationofm−arypartitionsmodulo m, whichwasgivenas Theorem 1 of [AFS15]. 3. Coloured m-ary partitions without gaps In this section we consider the following generating function for the numbers c(k)(n) of k-coloured m-ary m partitions without gaps: C(k)(q)=1+ ∞ c(k)(n)qn =1+ ∞ i 1−qmj −kj −1 . m m nX=0 Xi=0jY=0(cid:18)(cid:16) (cid:17) (cid:19) The following result gives an explicit expansion for C(k)(q) modulo m. m Theorem 3.1. If m is relatively prime to (k −1)! and to k ! for j ≥1, then we have 0 j C(k)(q)≡1+ m k0−1+ℓ0 qℓ0 ∞ 1−qmi+1 −1 i m−1 kj +ℓj −1 qℓjmj (modm). m k −1  k  ℓX0=1(cid:18) 0 (cid:19) !Xi=0(cid:16) (cid:17) jY=1 ℓXj=0(cid:26)(cid:18) j (cid:19) (cid:27)   Proof. Consider the finite product R = i 1−qmj −kj −1 , i≥0. i jY=0(cid:18)(cid:16) (cid:17) (cid:19) We prove that (3) Ri ≡ m k0k−1−+1ℓ0 qℓ0 1−qmi+1 −1 i m−1 kjk+ℓj −1 qℓjmj (modm), ℓX0=1(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:26)(cid:18) j (cid:19) (cid:27) 3   by inductiononi. As a basecase,the resultfor i=0 followsimmediately fromProposition1.1with a=k . 0 Now assume that (3) holds for some choice of i≥0, and we obtain R = i+1 1−qmj −kj −1 = 1−qmi+1 −ki+1 −1 R i+1 i jY=0(cid:18)(cid:16) (cid:17) (cid:19) (cid:18)(cid:16) (cid:17) (cid:19) ≡ m k0−1+ℓ0 qℓ0 1−qmi+1 −ki+1−1− 1−qmi+1 −1 k −1 ℓX0=1(cid:18) 0 (cid:19) !(cid:26)(cid:16) (cid:17) (cid:16) (cid:17) (cid:27) i m−1 k +ℓ × j j −1 qℓjmj (modm)  k  jY=1 ℓXj=0(cid:26)(cid:18) j (cid:19) (cid:27)   ≡ m k0−1+ℓ0 qℓ0 1−qmi+2 −1i+1 m−1 kj +ℓj −1 qℓjmj (modm), k −1  k  ℓX0=1(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:26)(cid:18) j (cid:19) (cid:27)   where the second last equivalence follows from the induction hypothesis, and the last equivalence follows from Proposition 1.1 with a=k +1, q =qmi+1 and a=1, q =qmi+1. i+1 This completes the proof of (3) by induction on i, and the result follows immediately since ∞ C(k)(q)=1+ R . m i i=0 X (cid:3) Corollary 3.2. For n≥1, suppose that n is divisible by m, with base m representation given by n=d ms+...+d mt, 1≤s≤t, s t where 1 ≤ d ≤ m−1, and 0 ≤ d ,...,d ≤ m−1. If m is relatively prime to (k −1)! and to k ! for s s+1 t 0 j j ≥1, then for 0≤d ≤m−1 we have 0 k −1−d k +d −1 t i k +d c(k)(n−d )≡ 0 0 ε +(−1)s−1 s s −1 j j −1 (modm), m 0 k −1  s k k  (cid:18) 0 (cid:19) (cid:26)(cid:18) s (cid:19) (cid:27)i=sj=s+1(cid:26)(cid:18) j (cid:19) (cid:27) X Y   where ε =0 if s is even, and ε =1 if s is odd. s s Proof. First note that we have n−d =m−d +(m−1)m1+...+(m−1)ms−1+(d −1)ms+d ms+1+...+d mt. 0 0 s s+1 t Now consider the following specializations: ℓ = m−d , ℓ =m−1, j = 1,...,s−1, ℓ = d −1, ℓ = d , 0 0 j s s j j j = s+1,...,t, and ℓ = 0, j > t. Then, in the expansion of the series C(k)(q) given in Theorem 3.1, the j m monomial qn arises once for each i ≥ 0, in particular with the above specializations truncated to ℓ ,...,ℓ . 0 i But with these specializations we have • for j =0: k −1+ℓ k −1+m−d k −1−d j j −1= 0 0 = 0 0 , from (1), k −1 k −1 k −1 (cid:18) j (cid:19) (cid:18) 0 (cid:19) (cid:18) 0 (cid:19) • for j =1,...,s−1: k +ℓ k −1 j j −1= j −1=0−1=−1, k k (cid:18) j (cid:19) (cid:18) j (cid:19) and s−1 i s−1 k +ℓ j j −1 = (−1)i =ε , s k i=0j=1(cid:26)(cid:18) j (cid:19) (cid:27) i=0 XY X 4 • for j =s: k +ℓ k +d −1 j j −1= s s −1, k k (cid:18) j (cid:19) (cid:18) s (cid:19) • for j =s+1,...,t: k +ℓ k +d j j −1= j j −1, k k (cid:18) j (cid:19) (cid:18) j (cid:19) • for j >t: k +ℓ k j j −1= j −1=1−1=0. k k (cid:18) j (cid:19) (cid:18) j(cid:19) The result follows straightforwardly from Theorem 3.1. (cid:3) Specializing the expression given in Corollary 3.2 to the case k = 1 for j ≥ 0 provides an alternative j prooftoAndrews,FraenkelandSellers’characterizationofm−arypartitionsmodulomwithoutgaps,which was given as Theorem 2.1 of [AFS16]. References A71. G.E.Andrews,Congruence properties of the m-ary partition function,J.NumberTheory3(1971), 104–110. AFS15. George E. Andrews, Aviezri S. Fraenkel, James A. Sellers, Characterizing the Number of m-ary Partitions Modulo m,AmericanMathematicalMonthly 122(2015), 880–885. AFS16. GeorgeE.Andrews,AviezriS.Fraenkel,JamesA.Sellers,m-arypartitionswithnogaps: Acharacterizationmodulo m,DiscreteMathematics 339(2016), 283–287. BOS13. C.Bessenrodt, J.B.Olsson,J.A.Sellers,Unique path partitions: characterization and congruences, AnnalsComb. 17(2013), 591–602. C69. R.F.Churchhouse,Congruence properties of the binarypartition function,Proc.CambridgePhilos.Soc.66(1969), 371–376. E16. Tom Edgar, The distribution of the number of parts of m-ary partitions modulo m, Rocky Mountain J. Math. (to appear),arXiv1603.00085 math.CO EZ15. ShaloshB.EkhadandDoronZeilberger,ComputerizingtheAndrews-Fraenkel-SellersProofsontheNumberofm-ary partitions mod m (and doing MUCH more!),arXiv1511.06791 math.CO R19. S. Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge Philos. Soc. 19 (1919), 207–210. R70. Ø.Rødseth,Some arithmetical properties of m-ary partitions,Proc.CambridgePhilos.Soc.68(1970), 447–453. Dept. of CombinatoricsandOptimization,University ofWaterloo, Canada E-mail address: [email protected], [email protected] 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.