CHARACTERIZING THE NUMBER OF COLOURED m−ARY PARTITIONS MODULO m, WITH AND WITHOUT GAPS I.P.GOULDENANDPAVELSHULDINER 7 Abstract. In a pair of recent papers, Andrews, Fraenkel and Sellers provide a complete characterization 1 forthenumberofm-arypartitionsmodulom,withandwithoutgaps. Inthispaperweextendtheseresults 0 to the case of coloured m-ary partitions, with and without gaps. Our method of proof is different, giving 2 explicitexpansionsforthegeneratingfunctionsmodulom. n a J 4 1. Introduction 2 An m-ary partition is an integer partition in which each part is a nonnegative integer power of a fixed O] integer m ≥ 2. An m-ary partition without gaps is an m-ary partition in which mj must occur as a part whenever mj+1 occurs as a part, for every nonnegative integer j. C Recently,Andrews,FraenklandSellers[AFS15]foundanexplicitexpressionthatcharacterizesthenumber . h of m-ary partitions of a nonnegative integer n modulo m; remarkably,this expression depended only on the at coefficients inthe basem representationofn. Subsequently Andrews, FraenkelandSellers[AFS16]followed m this up with a similar result for the number of m-ary partitions without gaps, of a nonnegative integer n modulom;again,theywereabletoobtaina(morecomplicated)explicitexpression,andagainthisexpression [ depended only on the coefficients in the base m representation of n. See also Edgar [E16] and Ekhad and 1 Zeilberger [EZ15] for more on these results. v The study of congruences for integer partition numbers has a long history, starting with the work of 7 7 Ramanujan(see,e.g.,[R19]). Forthespecialcaseofm-arypartitions,anumberofauthorshavestudiedcon- 0 gruenceproperties,includingChurchhouse[C69]form=2,Rødseth[R70]formaprime,andAndrews[A71] 7 for arbitrary positive integers m ≥ 2. The numbers of m-ary partitions without gaps had been previously 0 considered by Bessenrodt, Olsson and Sellers [BOS13] for m=2. . 1 In this note, we consider m-ary partitions, with and without gaps, in which the parts are coloured. To 0 specify the number of colours for parts of each size, we let k = (k ,k ,...) for positive integers k ,k ,..., 0 1 0 1 7 and say that an m-ary partition is k-coloured when there are k colours for the part mj, for j ≥ 0. This 1 j : means that there are kj different kinds of parts of the same size mj. Let b(mk)(n) denote the number of v i k-coloured m-ary partitions of n, and let c(mk)(n) denote the number of k-coloured m-ary partitions of n X without gaps. For the latter, some part mj of any colour must occur as a part whenever some part mj+1 of r any colour (not necessarily the same colour) occurs as a part, for every nonnegative integer j. a WeextendtheresultsofAndrews,FraenkelandSellersin[AFS15]and[AFS16]tothecaseofk-colouredm- arypartitions,wheremisrelativelyprime to(k −1)!andtok !forj ≥1. Ourmethodofproofisdifferent, 0 j givingexplicitexpansionsforthegeneratingfunctions modulom. Theseexpansionsdependonthefollowing simple result. Proposition 1.1. For positive integers m,a with m relatively prime to (a−1)!, we have (1−q)−a ≡(1−qm)−1m−1 a−1+ℓ qℓ (modm). a−1 ℓ=0 (cid:18) (cid:19) X Date:January26,2017. 2010 Mathematics Subject Classification. Primary05A17, 11P83;Secondary05A15. Keywords and phrases. partition,congruence, generatingfunction. TheworkofIPGwassupportedbyanNSERCDiscoveryGrant. 1 Proof. From the binomial theorem we have ∞ (1−q)−a = a−1+ℓ qℓ. a−1 ℓ=0(cid:18) (cid:19) X Now using the falling factorial notation (a−1+ℓ)a−1 =(a−1+ℓ)(a−2+ℓ)···(1+ℓ) we have a−a−1+1 ℓ =((a−1)!)−1(a−1+ℓ)a−1. (cid:18) (cid:19) But (a−1+ℓ+m)a−1 ≡(a−1+ℓ)a−1 (modm), for any integer ℓ, and ((a−1)!)−1 exists in Z since m is relatively prime to (a−1)!, which gives m a−1+ℓ+m a−1+ℓ (1) ≡ (modm), a−1 a−1 (cid:18) (cid:19) (cid:18) (cid:19) and the result follows. (cid:3) 2. Coloured m-ary partitions In this section we consider the following generating function for the numbers b(k)(n) of k-coloured m-ary m partitions: ∞ ∞ B(k)(q)= b(k)(n)qn = 1−qmj −kj. m m nX=0 jY=0(cid:16) (cid:17) The following result gives an explicit expansion for B(k)(q) modulo m. m Theorem 2.1. If m is relatively prime to (k −1)! and to k ! for j ≥1, then we have 0 j m−1 k −1+ℓ ∞ m−1 k +ℓ B(k)(q)≡ 0 0 qℓ0 j j qℓjmj (modm). m k −1 k ℓX0=0(cid:18) 0 (cid:19) !jY=1 ℓXj=0(cid:18) j (cid:19) Proof. Consider the finite product P = i 1−qmj −kj, i≥0. i jY=0(cid:16) (cid:17) We prove that (2) Pi ≡ m−1 k0k−1−+1ℓ0 qℓ0 1−qmi+1 −1 i m−1 kjk+ℓj qℓjmj (modm), ℓX0=0(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:18) j (cid:19) by inductiononi. As a basecase,the resultfor i=0 followsimmediately fromProposition1.1with a=k . 0 Now assume that (2) holds for some choice of i≥0, and we obtain P = i+1 1−qmj −kj = 1−qmi+1 −ki+1P i+1 i jY=0(cid:16) (cid:17) (cid:16) (cid:17) ≡ m−1 k0−1+ℓ0 qℓ0 1−qmi+1 −ki+1−1 i m−1 kj +ℓj qℓjmj (modm) k −1 k ℓX0=0(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:18) j (cid:19) ≡ m−1 k0−1+ℓ0 qℓ0 1−qmi+2 −1i+1 m−1 kj +ℓj qℓjmj (modm), k −1 k ℓX0=0(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:18) j (cid:19) where the second last equivalence follows from the induction hypothesis, and the last equivalence follows from Proposition 1.1 with a=k +1, q =qmi+1. i+1 2 This completes the proof of (2) by induction on i, and the result follows immediately since B(k)(q)= lim P . m i→∞ i (cid:3) Now we give the explicit expression for the coefficients modulo m that follows from the above expansion of the generating function B(k)(q). m Corollary 2.2. For n≥0, suppose that the base m representation of n is given by n=d +d m+...+d mt, 0≤t. 0 1 t If m is relatively prime to (k −1)! and to k ! for j ≥1, then we have 0 j k −1+d t k +d b(k)(n)≡ 0 0 j j (modm). m k −1 k (cid:18) 0 (cid:19)j=1(cid:18) j (cid:19) Y Proof. In the expansion of the series B(k)(q) given in Theorem 2.1, the monomial qn arises uniquely with m the specializations ℓ = d , j = 0,...,t and ℓ = 0, j ≥ t. But with these specializations, we have j j j kj+ℓj = kj =1, and the result follows immediately. (cid:3) kj kj (cid:0) (cid:1) (cid:0) (cid:1) Specializing the expression given in Corollary 2.2 to the case k = 1 for j ≥ 0 provides an alternative j proofto Andrews,FraenkelandSellers’characterizationofm−arypartitionsmodulo m, whichwasgivenas Theorem 1 of [AFS15]. 3. Coloured m-ary partitions without gaps In this section we consider the following generating function for the numbers c(k)(n) of k-coloured m-ary m partitions without gaps: C(k)(q)=1+ ∞ c(k)(n)qn =1+ ∞ i 1−qmj −kj −1 . m m nX=0 Xi=0jY=0(cid:18)(cid:16) (cid:17) (cid:19) The following result gives an explicit expansion for C(k)(q) modulo m. m Theorem 3.1. If m is relatively prime to (k −1)! and to k ! for j ≥1, then we have 0 j C(k)(q)≡1+ m k0−1+ℓ0 qℓ0 ∞ 1−qmi+1 −1 i m−1 kj +ℓj −1 qℓjmj (modm). m k −1 k ℓX0=1(cid:18) 0 (cid:19) !Xi=0(cid:16) (cid:17) jY=1 ℓXj=0(cid:26)(cid:18) j (cid:19) (cid:27) Proof. Consider the finite product R = i 1−qmj −kj −1 , i≥0. i jY=0(cid:18)(cid:16) (cid:17) (cid:19) We prove that (3) Ri ≡ m k0k−1−+1ℓ0 qℓ0 1−qmi+1 −1 i m−1 kjk+ℓj −1 qℓjmj (modm), ℓX0=1(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:26)(cid:18) j (cid:19) (cid:27) 3 by inductiononi. As a basecase,the resultfor i=0 followsimmediately fromProposition1.1with a=k . 0 Now assume that (3) holds for some choice of i≥0, and we obtain R = i+1 1−qmj −kj −1 = 1−qmi+1 −ki+1 −1 R i+1 i jY=0(cid:18)(cid:16) (cid:17) (cid:19) (cid:18)(cid:16) (cid:17) (cid:19) ≡ m k0−1+ℓ0 qℓ0 1−qmi+1 −ki+1−1− 1−qmi+1 −1 k −1 ℓX0=1(cid:18) 0 (cid:19) !(cid:26)(cid:16) (cid:17) (cid:16) (cid:17) (cid:27) i m−1 k +ℓ × j j −1 qℓjmj (modm) k jY=1 ℓXj=0(cid:26)(cid:18) j (cid:19) (cid:27) ≡ m k0−1+ℓ0 qℓ0 1−qmi+2 −1i+1 m−1 kj +ℓj −1 qℓjmj (modm), k −1 k ℓX0=1(cid:18) 0 (cid:19) !(cid:16) (cid:17) jY=1 ℓXj=0(cid:26)(cid:18) j (cid:19) (cid:27) where the second last equivalence follows from the induction hypothesis, and the last equivalence follows from Proposition 1.1 with a=k +1, q =qmi+1 and a=1, q =qmi+1. i+1 This completes the proof of (3) by induction on i, and the result follows immediately since ∞ C(k)(q)=1+ R . m i i=0 X (cid:3) Corollary 3.2. For n≥1, suppose that n is divisible by m, with base m representation given by n=d ms+...+d mt, 1≤s≤t, s t where 1 ≤ d ≤ m−1, and 0 ≤ d ,...,d ≤ m−1. If m is relatively prime to (k −1)! and to k ! for s s+1 t 0 j j ≥1, then for 0≤d ≤m−1 we have 0 k −1−d k +d −1 t i k +d c(k)(n−d )≡ 0 0 ε +(−1)s−1 s s −1 j j −1 (modm), m 0 k −1 s k k (cid:18) 0 (cid:19) (cid:26)(cid:18) s (cid:19) (cid:27)i=sj=s+1(cid:26)(cid:18) j (cid:19) (cid:27) X Y where ε =0 if s is even, and ε =1 if s is odd. s s Proof. First note that we have n−d =m−d +(m−1)m1+...+(m−1)ms−1+(d −1)ms+d ms+1+...+d mt. 0 0 s s+1 t Now consider the following specializations: ℓ = m−d , ℓ =m−1, j = 1,...,s−1, ℓ = d −1, ℓ = d , 0 0 j s s j j j = s+1,...,t, and ℓ = 0, j > t. Then, in the expansion of the series C(k)(q) given in Theorem 3.1, the j m monomial qn arises once for each i ≥ 0, in particular with the above specializations truncated to ℓ ,...,ℓ . 0 i But with these specializations we have • for j =0: k −1+ℓ k −1+m−d k −1−d j j −1= 0 0 = 0 0 , from (1), k −1 k −1 k −1 (cid:18) j (cid:19) (cid:18) 0 (cid:19) (cid:18) 0 (cid:19) • for j =1,...,s−1: k +ℓ k −1 j j −1= j −1=0−1=−1, k k (cid:18) j (cid:19) (cid:18) j (cid:19) and s−1 i s−1 k +ℓ j j −1 = (−1)i =ε , s k i=0j=1(cid:26)(cid:18) j (cid:19) (cid:27) i=0 XY X 4 • for j =s: k +ℓ k +d −1 j j −1= s s −1, k k (cid:18) j (cid:19) (cid:18) s (cid:19) • for j =s+1,...,t: k +ℓ k +d j j −1= j j −1, k k (cid:18) j (cid:19) (cid:18) j (cid:19) • for j >t: k +ℓ k j j −1= j −1=1−1=0. k k (cid:18) j (cid:19) (cid:18) j(cid:19) The result follows straightforwardly from Theorem 3.1. (cid:3) Specializing the expression given in Corollary 3.2 to the case k = 1 for j ≥ 0 provides an alternative j prooftoAndrews,FraenkelandSellers’characterizationofm−arypartitionsmodulomwithoutgaps,which was given as Theorem 2.1 of [AFS16]. References A71. G.E.Andrews,Congruence properties of the m-ary partition function,J.NumberTheory3(1971), 104–110. AFS15. George E. Andrews, Aviezri S. Fraenkel, James A. Sellers, Characterizing the Number of m-ary Partitions Modulo m,AmericanMathematicalMonthly 122(2015), 880–885. AFS16. GeorgeE.Andrews,AviezriS.Fraenkel,JamesA.Sellers,m-arypartitionswithnogaps: Acharacterizationmodulo m,DiscreteMathematics 339(2016), 283–287. BOS13. C.Bessenrodt, J.B.Olsson,J.A.Sellers,Unique path partitions: characterization and congruences, AnnalsComb. 17(2013), 591–602. C69. R.F.Churchhouse,Congruence properties of the binarypartition function,Proc.CambridgePhilos.Soc.66(1969), 371–376. E16. Tom Edgar, The distribution of the number of parts of m-ary partitions modulo m, Rocky Mountain J. Math. (to appear),arXiv1603.00085 math.CO EZ15. ShaloshB.EkhadandDoronZeilberger,ComputerizingtheAndrews-Fraenkel-SellersProofsontheNumberofm-ary partitions mod m (and doing MUCH more!),arXiv1511.06791 math.CO R19. S. Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge Philos. Soc. 19 (1919), 207–210. R70. Ø.Rødseth,Some arithmetical properties of m-ary partitions,Proc.CambridgePhilos.Soc.68(1970), 447–453. Dept. of CombinatoricsandOptimization,University ofWaterloo, Canada E-mail address: [email protected], [email protected] 5