Module12: Channel Adequacy and Computations 12A.CHANNELANALYSIS.........................................................................................................................................2 12B.REVIEWINGCHANNELDESIGN.......................................................................................................................4 12C.MANNING’SEQUATION...................................................................................................................................6 MANNING'S"N"VALUES.....................................................................................................................................................6 HYDRAULICRADIUS............................................................................................................................................................7 SLOPE.................................................................................................................................................................................8 VERIFYINGTHEPERMISSIBLEVELOCITY...............................................................................................................................9 12D.CONTINUITYEQUATION................................................................................................................................10 12D.UNDERSTANDINGTHEINPUTS....................................................................................................................11 CHANNELLINING..............................................................................................................................................................11 CROSS-SECTIONALAREA..................................................................................................................................................11 SLOPE...............................................................................................................................................................................11 12E.CHANNELDESIGN....................................................................................................................................................13 NOTES........................................................................................................................................................................14 MODULE12WORKPROBLEMS.............................................................................................................................15 Objectives DeterminevelocityinanopenchannelusingManning’sEquation. DeterminerunoffcapacityofanopenchannelusingtheContinuityEquation.. Explainhoweachofthethreebasicinputs(channellining,cross-sectionalarea,andslope) affectchannelsizing. VerifychanneladequacyusingthecombinedManning’s/ContinuityEquation. Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 1 12a. Channel Analysis Channeladequacyformanmadechannels: ManmadeChannelMustconveythe10-yearstormwithoutovertoppingandthe2-year stormwithouteroding. Pipes—Mustconveythe10-yearstorm. Itisimportantforthereviewertobefamiliarwiththecapacity(runoff/Q)anderodibility (velocity/V)requirementsinordertoverifytheadequacyofstormwaterconveyancechannelsand pipesystemsassociatedwithadevelopmentproject.Formoreinformationonhowconveyance channelsareanalyzedtodetermineiftheymeettheserequirements,consulttheVESCH,Chapter5, PartIII.Estimatingpeakrunoffratesandrunoffvolumesarecriticalinthedesignandsizingof manmadechannelsanddrainageditches.RecallfromModule12thatamanmadechannelmust conveythe10-yearstormwithoutovertoppingandthe2-yearstormwithouterodingtomeetthe channeladequacydefinition. Thenextfewsectionsofthismodulediscussthetwoprincipalequationsthatgointosizing manmadechannelsandditchesandverifyingbothcapacityandvelocity:Manning’sEquationfor determiningvelocityinanopenchannelandtheContinuityEquationfordeterminingrunoff capacityofanopenchannel.Understandingthesecalculationsandtheirinputsiscriticalto ensuringthattheboththesizeofachannelanditsliningareadequatetohandleflowfroma developmentproject. Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 2 Ingeneral,verificationofchanneladequacyshouldincludethefollowing:: Channelgeometry Aminimumofthreechannelcross-sectionsshouldbetakenataminimumspacingof50’alongthe channellengthdownstreamofthedischargepoint.Thechanneltopofbankshouldbewelldefined andidentifiablebyfieldparameterssuchasaflatteningorchangeinbankslope,flattened vegetationinthedirectionofflow,soiltypesorotherobviousindicatorsoffrequentflowlevels. Whenthetopofbankdoesnotappeartobeobvious,ahydrologicanalysisofthecontributory drainageareaandthecorrespondingtwo(2)-yearundevelopedpeakdischargemaybeusedto definethecross-sectionalflowareausingManning’sequation. Channellining Thechannelliningmaterialshouldbeevaluatedtodeterminethepermissiblevelocitiesasfoundin Table5-22oftheVESCH. Slope Theseinclude,fornaturalandmanmadeconveyance,respectively: Channelslope:Relativeelevationsshouldbetakenalongthechannellengthatthechannel cross-sectionsinordertodeterminetheaveragelongitudinalslopeofthechannel. Energyslope:Ahydraulicgradelinecalculationshouldaccompanyanyanalysisofan existingorproposedpipesystemtoverifythattheflowiscontainedwithinthesystem duringtheten(10)-yearfrequencystorm. Channelsurvey: Adesignermustinvestigateeachchannelsegment(reach)toaccuratelydeterminetherelevant channelcharacteristics(e.g.,slope,cross-section,roughness,downstreamrestrictions,etc.).This informationisthenusedtotoverifychanneladequacy PartIIIofChapter5oftheVESCHshouldbeconsultedforadditionalinformationondetermining channeladequacyandchannelanalysis. Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 3 12b. Reviewing Channel Design RefertotheStormwaterConveyanceChannelErosionStandardsandSpecification3.17orthe applicableVirginiaStormwaterBMPSpecificationtoverifycorrectdesignspecifications.For example,ESCSpecification3.17requiresthefollowing: • Topwidthofparabolicandv-shapedchannelsnottoexceed30’ • Bottomwidthoftrapezoidandgrasslinednottoexceed15’ • Outletprotection • Grasslinedchannelsstabilizedbythepermanentseedingand/orsodspecification • Erosionnetting • Riprap(useStd&Specs) Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 4 Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 5 12c. Manning’s Equation Manning'sEquationisusedtocalculatethevelocityofflowinanopenchannel: 1.49 V R(2/3) s n Where: V=the average velocity in the channel (feet/second) n=Manning’sroughnesscoefficientbasedonchannellining(dimensionless) R=hydraulicradius=Area/Perimeter(feet) A=wettedcrosssectionalareaofflow(squarefeet) P=wettedperimeterofthecross-sectionalareaofflowperpendiculartoflow direction(feet) s=slopeofthechannel(infeet/foot) Manning's "n" Values ThefirstinputintotheManning'sEquationistheManning's"n"value,alsoknownastheManning's roughnesscoefficient.The"n"valueisadimensionlessnumberthatisusedtoassignavaluetothe roughnessofachannel.Ingeneral,smoothersurfaceshavelower"n"valuesandroughersurfaces havehigher"n"values.Table5-12intheVESCH(pageV-118)providesrangesof"n"valuesfor channellinings(concreteandasphalt)andpipelinings(corrugatedmetalandconcrete).Table5-16 (pageV-135)provides"n"valuesfornaturalchannels.TheVESCHpresentsaseriesofmodifiersto beusedwiththevaluesobtainedfromTable5-16.Thesemodifierstakeintoaccountcharacteristics suchaschannelirregularity,variationinchannelcrosssections,effectofobstructions,vegetation andflowconditions,andsinuosity.TheVESCHalsooutlinestheprocedureformodifyingthe"n" value(pagesV-123andV-124). Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 6 Table12.1presentsaseriesof"n"valuesforartificialandnaturally-linedchannels.Anaverage"n" valueusedforsizinggrassditchlinesis0.05(seeTable12.1,sectionIV,subsetB).TheVDOT Drainage Manualusesan"n"valueof0.05forgrass-linedchannelsonitsseriesofchannelcharts. Hydraulic Radius Inordertocalculatethehydraulicradiusofthechannel(A/P),thecross-sectionalarea(A)ofthe channelandthewettedperimeter(P)needtobedetermined. Area Thearea(A)representsthecross-sectionalareaofthechannel.Therearethreemaintypesof channelcross-sections—vee,trapezoidal,andparabolic.Eachofthesecrosssectionshasitsown equationfordeterminingarea.TheseequationsarepresentedinPlate5-28oftheVESCH(pageV- 111). WettedPerimeter Thewettedperimeter(P)isthelengthofthechannelcross-sectionthatisincontactwiththeflow ofwater.Figure12.1illustratesthisconcept. Figure12.1WettedPerimeter Theequationsfordeterminingthewettedperimeterforseveralchannelcrosssectionscanbe foundinTable12.2.Usingtheareaandthewettedperimeter,thehydraulicradius(A/P)ofthe channelcanbecalculated.Plate5-28oftheVESCH(pageV-111)incorporatesthisintoonestep, providinganequationforthehydraulicradiusofthethreeprimarychannels(v-shape,trapezoidal, andparabolic). Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 7 Slope ThefinalinputintotheManning'sequationischannelslope.Thisiscalculatedjustlikeanyother slope(rise/run).Theslopeofthechannelrelatestotheelevationchangeinfeet,dividedbythe lengthofthechannelinfeet,astakenfromtheplan. Table12.2EquationsforChannelCross-Sections Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 8 Verifying the Permissible Velocity Oncethereviewerverifiestheaveragevelocityinthechannel(V),theproposedchannelliningcanbe evaluatedforadequacyatthatvelocity.Table5-22(pageV-140)intheVESCHprovidesalistof permissiblevelocitiesbasedonsoiltypesforunlinedearthenchannels. Incaseswherethechanneltends tomeander,areductioninpermissiblevelocityiscalculatedusingTable5-23(pageV-141).Table3.17-A (pageDI-135)intheStormwaterConveyanceChannelsection(Chapter3)oftheVESCHprovides permissiblevelocitiesforgrass-linedchannels.Ifthevelocityinthechannelislessthanthepermissible velocity,thenthechanneldesignisconsideredtohaveadequateerosionresistance.Ifthevelocityinthe channelishigherthanthepermissiblevelocity,thenthechannelliningneedstoberedesignedtoprovide additionalerosionresistance. Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 9 12d. Continuity Equation Oncethecross-sectionalareaandthevelocityofthechannelareknown,thecapacity("Q")canbe determinedusingtheContinuityEquation. TheContinuityEquationis: ܳWh=ereܸ, × ܣ Q=flowrateinthechannelincubicfeetpersecond(cfs) V=theaveragevelocityinthechannel(feet/second)fromManning'sEquation A=crosssectionalareaofthechannelinsquarefeet Thechannelcapacity(Q)shouldbeabletoaccommodatethepeakrateofrunoff(Q)fromthesite (refertoUnitVIIIandUnitIXforhowtodeterminethepeakrateofrunoff).Ifthecapacityofthe channelisgreaterthanthepeakrateofrunofffromthesite,thenthevelocityshouldbecalculated usingtheactualdepthofflow. Module 12:Channel AdequacyandComputations PlanReviewer for ErosionandSedimentControl Page 10
Description: