CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED K-BESSEL FUNCTION OF FIRST 6 KIND 1 0 2 K.S.NISARANDS.R.MONDAL n a Abstract. Generalized integral formulas involving the generalized modified J k-Bessel function Jc,γ,λ(z) of first kind are expressed in terms generalized k,ν 5 k−Wright functions .Some interesting special cases of the main results are 2 alsodiscussed ] A C 1. Introduction . h t The integral formula involving various special functions have been studied by a m many researchers ([7],[8]). In 1888 Pincherle gave the integrals involving product of Gamma functions along vertical lines (see [1, 2, 3]). Barnes [4] , Mellin [5] and [ Cahen [6] extended some of these integrals in the study of Riemann zeta function 1 and other Drichlet’s series. The integral representation of Fox H-functions and v hypergeometric F functionsstudiedby[9]and[10]respectively. Also,theintegral 7 2 1 representationofBesselfunctions aregiveninmany recentworks(see [11], [12], [7] 8 4 and [15]). 6 let k R;α,λ,γ,υ C;Re(λ) >0,Re(υ)>0,the k-Bessel function of the first 0 kind defi∈ned by the fol∈lowing series [13] : . 1 0 ∞ (γ) ( 1)n(z/2)n 6 (1.1) J(γ),(λ)(z)= n,k − 1 k,ν nX=0Γk(λn+υ+1) (n!)2 : v where (γ) is the k Pochhammer symbol [25] is defined as: i n,k − X r (1.2) (x) =x(x+k)(x+2k)...(x+(n 1)k),γ C,k R and n N a n,k − ∈ ∈ ∈ and Γ (z) is the k gamma function, k be the positive real number, defined by k − (see [25]) ∞ (1.3) Γk(z)= e−tkktz−1dt,Re(z)>0 Z 0 Clearly, for k =1, Γ (z) reduces to the classical Γ(z) function. k In this paper, we introduce a new generalization of k Bessel function called − generalized modified k Bessel function and is defined as: − 1991 Mathematics Subject Classification. Primary 33B20; 33C20; 26A33; secondary 33B15; 33C05. Key words and phrases. k-Bessel function; Gamma function; hypergeometric function 2F1; generalized hypergeometric function pFq; generalized (Wright) hypergeometric functions pΨq; Oberhettinger’sintegralformula; 1 2 K.S.NISARANDS.R.MONDAL let k R;α,λ ,γ,υ,c,b C;Re(λ ) > 0,Re(υ) > 0,the generalized modified 1 1 ∈ ∈ k Bessel function of the first kind given by the following series − ∞ (c)n(γ) (z/2)υ+2n (1.4) Jc,γ,λ(z)= n,k k,ν nX=0Γk λ1n+υ+ b+21 (n!)2 (cid:0) (cid:1) Theaimofthispaperistoestablishtwogeneralizedintegralformulas,whichare expressed in terms of generalized k Wright functions, by inserting newly general- − ized modified k-Bessel function. The generalized Wright hypergeometric function ψ (z) is given by the series p q (1.5) ψ (z)= ψ (ai,αi)1,p z = ∞ pi=1Γ(ai+αik)zk, p q p q(cid:20) (bj,βj)1,q (cid:12)(cid:12) (cid:21) Xk=0 Qqj=1Γ(bj +βjk) k! (cid:12) Q where a ,b C, and real α ,β R ((cid:12)i = 1,2,...,p;j = 1,2,...,q). Asymptotic i j i j behavior of t∈his function for large∈values of argumentof z C were studied in [17] ∈ and under the condition q p (1.6) β α > 1 j i − − Xj=1 Xi=1 was found in the work of [18, 19]. Properties of this generalized Wright function were investigated in [21], (see also [22, 23]. In particular, it was proved [21] that ψ (z), z C is an entire function under the condition (1.6). p q ∈ The generalized hypergeometric function represented as follows [24]: (1.7) F (αp); z = ∞ Πpj=1(αj)nzn, p q(cid:20) (βq); (cid:21) nX=0 Πpj=1(βj)n n! provided p q;p=q+1 and z <1 ≤ | | where(λ) iswellknownPochhammersymboldefinedfor( for λ C)(see[24]) n ∈ 1 (n=0) (1.8) (λ) := n (cid:26) λ(λ+1)....(λ+n 1) (n N := 1,2,3.... ) − ∈ { } Γ(λ+n) − (1.9) (λ) = λ C Z . n Γ(λ) ∈ \ 0 (cid:0) (cid:1) − where Z is the set of non-positive integers. 0 If we put α = ... = α = β = .... = β in (1.5),then (1.7) is a special case of 1 p 1 q the generalized Wright function: p (1.10) ψ (z)= ψ (α1,1),...,(αp,1); z = j=1Γ(αj) F α1,...,αp; z p q p q(cid:20) (β1,1),...,(βq,1); (cid:21) Qqj=1Γ(βj) p q(cid:20) β1,...,βq; (cid:21) Q For the present investigation, we need the following result of Oberbettinger [14] ∞ −λ a µ Γ(2µ)Γ(λ µ) (1.11) xµ−1 x+a+ x2+2ax dx=2λa−λ − Z0 (cid:16) p (cid:17) (cid:16)2(cid:17) Γ(1+λ+µ) provided 0<Re(µ)<Re(λ) SOME UNIFIED INTEGRALS OF GENERALIZED K-BESSEL FUNCTION 3 Also,weneedthefollowingrelationofΓ withtheclassicalgammaEulerfunction k (see [26]: (1.12) Γ (z+k)=zΓ (z) k k (1.13) Γk(z)=kkz−1Γ z k (cid:16) (cid:17) (1.14) Γ (k)=1 k 2. Main results Two generalized integral formulas established here, which expressed in terms of generalized k Wright functions (1.10) by inserting the generalized modified k- − Bessel function of the first kind (1.4) with the suitable argument in the integrand of (1.11) Theorem 1. For λ,µ,ν,c,λ C, Re(λ+ν+2)> Re(µ) > 0 and x > 0. Then 1 ∈ the following formula holds true: ∞ −λ y xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) = 21−ν−µaµ−λ−υyυk−2µΓ(2µ) (λ+υ+k,2),(k(ν+λ µ),2k); cy2 (2.1) ×k,2Ψ3(cid:20) ν+ b+21,λ1 ,(k(1+λ+υ+µ−),2k),(λ+ν,2); 4a2(cid:21) where Ψ denot(cid:0)e the k-Fox-(cid:1)Wright function [26] k,2 3 Proof. By applying (1.4) to the LHS of (2.1) and interchanging the order of inte- gration and summation, which is verified by uniform convergence of the involved series under the given conditions , we obtain ∞ −λ y xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) ∞ −λ = xµ−1 x+a+ x2+2ax Z0 (cid:16) p (cid:17) ∞ (c)n(γ) y υ+2n −(υ+2n) n,k 2 x+a+ x2+2ax dx ×nX=0Γk λ1n+υ+ b+21 (cid:0)((cid:1)n!)2 (cid:16) p (cid:17) ∞ ((cid:0)c)n(γ) (cid:1)y υ+2n ∞ −(λ+ν+2n) = n,k 2 xµ−1 x+a+ x2+2ax dx nX=0Γk λ1n+υ+ b+21 (cid:0)((cid:1)n!)2 Z0 (cid:16) p (cid:17) In view of(cid:0)the conditions(cid:1)given in Theorem 1, since R(λ+ν) > R(µ) > 0 k N :=N 0 . 0 ∈ ∪{ } Applying (1.11) to the integrand of (2.1) and obtain the following expression: ∞ (c)n(γ) y υ+2n a µ = n,k 2 2(λ+ν+2n)a−(λ+ν+2n) nX=0Γk(λ1n+υ+1)(cid:0)((cid:1)n!)2 (cid:16)2(cid:17) Γ(2µ)Γ(λ+ν+2n µ) − × Γ(1+λ+ν+µ+2n) 4 K.S.NISARANDS.R.MONDAL By making the use of the relation (1.12), we obtain = 21−ν−µaµ−λ−υyυk−2µΓ(2µ) ∞ Γ (λ+ν+k+2n)Γ (λk+νk µk+2kn) k k − × Γ (λ+ν2n)Γ λ n+υ+ b+1 Γ (k+λk+νk+µk+2kn) Xk−0 k k 1 2 k (c)n y2 n (cid:0) (cid:1) ×(n!)2 (cid:18)4a2(cid:19) which is the desired result. (cid:3) Corollary 1. Let the conditions of Theorem 1 be satisfied and let k =λ =1 and 1 c= c in (2.1). Then the following integral formula holds: − ∞ −λ y xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) = 21−ν−µaµ−λ−υyυΓ(2µ) (1+λ+υ,2),(ν+λ µ,2); cy2 ×2Ψ3(cid:20) ν+ b+21,λ1 ,(1+λ+υ+µ−,2),(λ+ν,2); −4a2 (cid:21) (cid:0) (cid:1) which is the result given by [12] . Corollary 2. Setting b = c = 1 in (2.1) with some appropriate parameter re- placements, we get the integral formula of Bessel function J (z) given by Choi and υ Agarwal [11]. Theorem 2. For λ ,µ,ν,c,b C,0 < R(µ+ν+2) < R(λ+ν+2) and x > 0, 1 ∈ then the following integral formula holds true: ∞ −λ xy xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) = 21−2ν−µyνaµ−λk1+λ−µΓ(λ µ) − (k(2µ+2ν),4k),(ν+λ+k,2); cy2 (2.2) Ψ ×k,2 3(cid:20) (ν+1,λ1),(ν+λ,2),(k(1+λ+µ+2ν),4k); 4 (cid:21) where Ψ denote the k-Fox-Wright function [26] k,2 3 Proof. By applying (1.4) to the LHS of (2.2) and interchanging the order of inte- gration and summation, which is verified by uniform convergence of the involved series under the given conditions , we obtain SOME UNIFIED INTEGRALS OF GENERALIZED K-BESSEL FUNCTION 5 ∞ −λ xy xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) ∞ −λ = xµ−1 x+a+ x2+2ax Z0 (cid:16) p (cid:17) ∞ (c)n(γ) xy υ+2n −(υ+2n) n,k 2 x+a+ x2+2ax dx ×nX=0Γk λ1n+υ+ b+21 (cid:0) (n(cid:1)!)2 (cid:16) p (cid:17) ∞ ((cid:0)c)n(γ) (cid:1)y υ+2n = n,k 2 nX=0Γk λ1n+υ+ b+21 (cid:0)((cid:1)n!)2 ∞ (cid:0) (cid:1) −(λ+υ+2n) x(µ+υ+2n)−1 x+a+ x2+2ax dx ×Z0 (cid:16) p (cid:17) Applying (1.11) to the integrand of (2.2) ,we obtain the following expression: ∞ (c)n(γ) y υ+2n a µ+υ+2n = n,k 2 2(λ+υ+2n)a−(λ+υ+2n) nX=0Γk λ1n+υ+ b+21 (cid:0)((cid:1)n!)2 (cid:16)2(cid:17) (cid:0) (cid:1) Γ(2µ+2ν+4n)Γ(λ µ) − × Γ(1+λ+2ν+µ+4n) By making the use of (1.12), we obtain = 21−2ν−µyνaµ−λkλ−µ+1Γ(λ µ) − ∞ (γ)n,kΓk(λ+ν+k+2n)Γk(2µk+2νk+4nk) cy2 n × (n!)2Γ λ n+υ+ b+1 Γ (λ+ν+2n)Γ ((1+λ+µ+2υ+4n)k)(cid:18) 4 (cid:19) kX−0 k 1 2 k k which is the desire(cid:0)d result. (cid:1) (cid:3) Corollary 3. Let the conditions given in Theorem 2 satisfied and set k = λ = 1 1,and c= c Theorem 2 reduces to − ∞ −λ xy xµ−1 x+a+ x2+2ax Jc,γ,1 dx Z0 (cid:16) p (cid:17) 1,υ (cid:18)x+a+√x2+2ax(cid:19) = 21−2ν−µyνaµ−λΓ(λ µ) − (2µ+2ν,4),(ν+λ+1,2); cy2 Ψ ×2 3(cid:20) ν+ b+21,λ1 ,(ν+λ,2),(1+λ+µ+2ν,4); 4 (cid:21) (cid:0) (cid:1) which is the result given by [12] . Corollary 4. setting b=c=1 in (2.1) with some appropriate parameter replace- ments, we get the integral formula of Bessel function J (z) given by Choi and υ Agarwal [11]. Conclusion The integral formulas for generalized modified k Bessel function of first kind is − derivedandtheresultsareexpressedintermofgeneralizedk Wrightfunction.Some − of interesting special cases also derivedfrom the main results. Using some suitable parametric replacement, theorems 1 and 2 gives the unified integralrepresentation of generalized Bessel function, if c = 1 and integral representation of modified − Bessel function by , if c=1 . 6 K.S.NISARANDS.R.MONDAL References [1] S.Pincherle,SullefunzioniipergeometrichegeneralizzateNotaI,AttidellaRealeAccademia dei Lincei. Rendiconti dellaClassedi Scienze Fisiche, Matematiche e Naturali, Serie4, Vol. 4(1888), 694–700 [2] Pincherle, S: Sulle funzioni ipergeometriche generalizzate. Nota I-II. In: Opere Scelte-I, UnioneMatematicaItaliana,Ed.Cremonese,Rome(1954), 223-239. [3] Mainardi,F,Pagnini,G,Pincherle,S:ThepioneeroftheMellin-Barnesintegrals.J.Comput. Appl.Math.153,(2003),331-342. [4] Barnes,EW:Anewdevelopmentofthetheoryofthehypergeometricfunctions.Proc.Lond. Math.Soc.6,141-177,(1908) [5] Mellin,HM:AbrißeinereinheitlichentheoriederGammaundderhypergeometrischenfunk- tionen.Math.Ann.68,305-337(1910) [6] Cahen,E:SurlafonctionξσdeRiemannetsurdesfonctionsanalogues.Ann.Sci.E´c.Norm. Super.11,75-164,(1894) [7] Brychkov,YA:Handbookofspecialfunctions: derivatives,integrals,seriesandotherformu- las.CRCPress,BocaRaton,(2008) [8] Choi, J, Hasanov, A, Srivastava, HM, Turaev, M: Integral representations for Srivastava’s triplehypergeometricfunctions.Taiwan.J.Math.15,2751-2762(2011) [9] Garg, M, Mittal, S: On a new unified integral. Proc. Indian Acad. Sci. Math. Sci. 114(2), 99-101(2003) [10] Ali,S:Onsomenewunifiedintegrals.Adv.Comput.Math.Appl.1(3), 151-153(2012) [11] JunesangChoi,PraveenAgarwal,Certainunifiedintegralsassociated withBesselfunctions, BoundaryValueProblems2013,2013:95 [12] J.Choi, P.Agarwal,S.Mathur and S.D.Purohit, Certain new integral formulas involving the generalizedBesselfunctions,Bull.KoreanMath.Soc.,4(51),2014, 995-1003. [13] L.G.Romero,G.A.DorregoandR.A.Cerutti,Thek-Besselfunctionoffirstkind,International Mathematicalforum,38(7),1859-1854. [14] Oberhettinger,F:TablesofMellinTransforms.Springer,NewYork(1974) [15] Watson,GN:ATreatiseontheTheoryofBesselFunctions.CambridgeMathematicalLibrary Edition.CamdridgeUniversityPress,Camdridge(1995). Reprinted(1996) [16] A.Erd´elyi,W.Magnus,F.OberhettingerandF.G.Tricomi,Highertranscendentalfunctions. Vols. I, II,McGraw-HillBookCompany, Inc.,NewYork,1953. NewYork,Toronto, London, 1953. [17] C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London. Math.Soc.27(1928), no.4,389-400. [18] E.M.Wright,TheasymptoticexpansionofintegralfunctionsdefinedbyTaylorseries,Philos. Trans.Roy.Soc.London, Ser.A.238(1940), 423–451. [19] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. LondonMath.Soc.(2)46(1940), 389-408. [20] A.A.KilbasandM.Saigo,H-transforms, Chapman&Hall/CRC,BocaRaton,FL,2004. [21] A. A. Kilbas, M. Saigo and J. J. Trujillo, On the generalized Wright function, Fract. Calc. Appl.Anal.5(2002), no.4,437–460. [22] A. A. Kilbas and N. Sebastian, Generalized fractional integration of Bessel function of the firstkind,IntegralTransformsSpec.Funct.19(2008), no.11-12,869–883. [23] A.A.KilbasandN.Sebastian,FractionalintegrationoftheproductofBesselfunctionofthe firstkind,Fract.Calc.Appl.Anal.13(2010), no.2,159–175. [24] E.D.Rainville,Special functions,Macmillan,NewYork,1960. [25] R.DiazandE.Pariguan,Onhypergeometricfunctions andk−Pochhammersymbol,Divul- gacionesMathematicas, Vol.15,2(2007), pp179-192. [26] R. A. Cerutti, On the k−Bessel functions, International Mathematical forum, Vol. 7, 38(2012), pp.1851-1857. SOME UNIFIED INTEGRALS OF GENERALIZED K-BESSEL FUNCTION 7 DepartmentofMathematics,CollegeofArts&Science-WadiAddwaser,PrinceSat- tambinAbdulaziz University,SaudiArabia E-mail address: [email protected] Department of Mathematics, College of Science-Al Ahsa, King Faisal University, SaudiArabia E-mail address: [email protected]