ebook img

Certain unified integral formulas involving the generalized modified k-bessel function of first kind PDF

0.12 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Certain unified integral formulas involving the generalized modified k-bessel function of first kind

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED K-BESSEL FUNCTION OF FIRST 6 KIND 1 0 2 K.S.NISARANDS.R.MONDAL n a Abstract. Generalized integral formulas involving the generalized modified J k-Bessel function Jc,γ,λ(z) of first kind are expressed in terms generalized k,ν 5 k−Wright functions .Some interesting special cases of the main results are 2 alsodiscussed ] A C 1. Introduction . h t The integral formula involving various special functions have been studied by a m many researchers ([7],[8]). In 1888 Pincherle gave the integrals involving product of Gamma functions along vertical lines (see [1, 2, 3]). Barnes [4] , Mellin [5] and [ Cahen [6] extended some of these integrals in the study of Riemann zeta function 1 and other Drichlet’s series. The integral representation of Fox H-functions and v hypergeometric F functionsstudiedby[9]and[10]respectively. Also,theintegral 7 2 1 representationofBesselfunctions aregiveninmany recentworks(see [11], [12], [7] 8 4 and [15]). 6 let k R;α,λ,γ,υ C;Re(λ) >0,Re(υ)>0,the k-Bessel function of the first 0 kind defi∈ned by the fol∈lowing series [13] : . 1 0 ∞ (γ) ( 1)n(z/2)n 6 (1.1) J(γ),(λ)(z)= n,k − 1 k,ν nX=0Γk(λn+υ+1) (n!)2 : v where (γ) is the k Pochhammer symbol [25] is defined as: i n,k − X r (1.2) (x) =x(x+k)(x+2k)...(x+(n 1)k),γ C,k R and n N a n,k − ∈ ∈ ∈ and Γ (z) is the k gamma function, k be the positive real number, defined by k − (see [25]) ∞ (1.3) Γk(z)= e−tkktz−1dt,Re(z)>0 Z 0 Clearly, for k =1, Γ (z) reduces to the classical Γ(z) function. k In this paper, we introduce a new generalization of k Bessel function called − generalized modified k Bessel function and is defined as: − 1991 Mathematics Subject Classification. Primary 33B20; 33C20; 26A33; secondary 33B15; 33C05. Key words and phrases. k-Bessel function; Gamma function; hypergeometric function 2F1; generalized hypergeometric function pFq; generalized (Wright) hypergeometric functions pΨq; Oberhettinger’sintegralformula; 1 2 K.S.NISARANDS.R.MONDAL let k R;α,λ ,γ,υ,c,b C;Re(λ ) > 0,Re(υ) > 0,the generalized modified 1 1 ∈ ∈ k Bessel function of the first kind given by the following series − ∞ (c)n(γ) (z/2)υ+2n (1.4) Jc,γ,λ(z)= n,k k,ν nX=0Γk λ1n+υ+ b+21 (n!)2 (cid:0) (cid:1) Theaimofthispaperistoestablishtwogeneralizedintegralformulas,whichare expressed in terms of generalized k Wright functions, by inserting newly general- − ized modified k-Bessel function. The generalized Wright hypergeometric function ψ (z) is given by the series p q (1.5) ψ (z)= ψ (ai,αi)1,p z = ∞ pi=1Γ(ai+αik)zk, p q p q(cid:20) (bj,βj)1,q (cid:12)(cid:12) (cid:21) Xk=0 Qqj=1Γ(bj +βjk) k! (cid:12) Q where a ,b C, and real α ,β R ((cid:12)i = 1,2,...,p;j = 1,2,...,q). Asymptotic i j i j behavior of t∈his function for large∈values of argumentof z C were studied in [17] ∈ and under the condition q p (1.6) β α > 1 j i − − Xj=1 Xi=1 was found in the work of [18, 19]. Properties of this generalized Wright function were investigated in [21], (see also [22, 23]. In particular, it was proved [21] that ψ (z), z C is an entire function under the condition (1.6). p q ∈ The generalized hypergeometric function represented as follows [24]: (1.7) F (αp); z = ∞ Πpj=1(αj)nzn, p q(cid:20) (βq); (cid:21) nX=0 Πpj=1(βj)n n! provided p q;p=q+1 and z <1 ≤ | | where(λ) iswellknownPochhammersymboldefinedfor( for λ C)(see[24]) n ∈ 1 (n=0) (1.8) (λ) := n (cid:26) λ(λ+1)....(λ+n 1) (n N := 1,2,3.... ) − ∈ { } Γ(λ+n) − (1.9) (λ) = λ C Z . n Γ(λ) ∈ \ 0 (cid:0) (cid:1) − where Z is the set of non-positive integers. 0 If we put α = ... = α = β = .... = β in (1.5),then (1.7) is a special case of 1 p 1 q the generalized Wright function: p (1.10) ψ (z)= ψ (α1,1),...,(αp,1); z = j=1Γ(αj) F α1,...,αp; z p q p q(cid:20) (β1,1),...,(βq,1); (cid:21) Qqj=1Γ(βj) p q(cid:20) β1,...,βq; (cid:21) Q For the present investigation, we need the following result of Oberbettinger [14] ∞ −λ a µ Γ(2µ)Γ(λ µ) (1.11) xµ−1 x+a+ x2+2ax dx=2λa−λ − Z0 (cid:16) p (cid:17) (cid:16)2(cid:17) Γ(1+λ+µ) provided 0<Re(µ)<Re(λ) SOME UNIFIED INTEGRALS OF GENERALIZED K-BESSEL FUNCTION 3 Also,weneedthefollowingrelationofΓ withtheclassicalgammaEulerfunction k (see [26]: (1.12) Γ (z+k)=zΓ (z) k k (1.13) Γk(z)=kkz−1Γ z k (cid:16) (cid:17) (1.14) Γ (k)=1 k 2. Main results Two generalized integral formulas established here, which expressed in terms of generalized k Wright functions (1.10) by inserting the generalized modified k- − Bessel function of the first kind (1.4) with the suitable argument in the integrand of (1.11) Theorem 1. For λ,µ,ν,c,λ C, Re(λ+ν+2)> Re(µ) > 0 and x > 0. Then 1 ∈ the following formula holds true: ∞ −λ y xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) = 21−ν−µaµ−λ−υyυk−2µΓ(2µ) (λ+υ+k,2),(k(ν+λ µ),2k); cy2 (2.1) ×k,2Ψ3(cid:20) ν+ b+21,λ1 ,(k(1+λ+υ+µ−),2k),(λ+ν,2); 4a2(cid:21) where Ψ denot(cid:0)e the k-Fox-(cid:1)Wright function [26] k,2 3 Proof. By applying (1.4) to the LHS of (2.1) and interchanging the order of inte- gration and summation, which is verified by uniform convergence of the involved series under the given conditions , we obtain ∞ −λ y xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) ∞ −λ = xµ−1 x+a+ x2+2ax Z0 (cid:16) p (cid:17) ∞ (c)n(γ) y υ+2n −(υ+2n) n,k 2 x+a+ x2+2ax dx ×nX=0Γk λ1n+υ+ b+21 (cid:0)((cid:1)n!)2 (cid:16) p (cid:17) ∞ ((cid:0)c)n(γ) (cid:1)y υ+2n ∞ −(λ+ν+2n) = n,k 2 xµ−1 x+a+ x2+2ax dx nX=0Γk λ1n+υ+ b+21 (cid:0)((cid:1)n!)2 Z0 (cid:16) p (cid:17) In view of(cid:0)the conditions(cid:1)given in Theorem 1, since R(λ+ν) > R(µ) > 0 k N :=N 0 . 0 ∈ ∪{ } Applying (1.11) to the integrand of (2.1) and obtain the following expression: ∞ (c)n(γ) y υ+2n a µ = n,k 2 2(λ+ν+2n)a−(λ+ν+2n) nX=0Γk(λ1n+υ+1)(cid:0)((cid:1)n!)2 (cid:16)2(cid:17) Γ(2µ)Γ(λ+ν+2n µ) − × Γ(1+λ+ν+µ+2n) 4 K.S.NISARANDS.R.MONDAL By making the use of the relation (1.12), we obtain = 21−ν−µaµ−λ−υyυk−2µΓ(2µ) ∞ Γ (λ+ν+k+2n)Γ (λk+νk µk+2kn) k k − × Γ (λ+ν2n)Γ λ n+υ+ b+1 Γ (k+λk+νk+µk+2kn) Xk−0 k k 1 2 k (c)n y2 n (cid:0) (cid:1) ×(n!)2 (cid:18)4a2(cid:19) which is the desired result. (cid:3) Corollary 1. Let the conditions of Theorem 1 be satisfied and let k =λ =1 and 1 c= c in (2.1). Then the following integral formula holds: − ∞ −λ y xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) = 21−ν−µaµ−λ−υyυΓ(2µ) (1+λ+υ,2),(ν+λ µ,2); cy2 ×2Ψ3(cid:20) ν+ b+21,λ1 ,(1+λ+υ+µ−,2),(λ+ν,2); −4a2 (cid:21) (cid:0) (cid:1) which is the result given by [12] . Corollary 2. Setting b = c = 1 in (2.1) with some appropriate parameter re- placements, we get the integral formula of Bessel function J (z) given by Choi and υ Agarwal [11]. Theorem 2. For λ ,µ,ν,c,b C,0 < R(µ+ν+2) < R(λ+ν+2) and x > 0, 1 ∈ then the following integral formula holds true: ∞ −λ xy xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) = 21−2ν−µyνaµ−λk1+λ−µΓ(λ µ) − (k(2µ+2ν),4k),(ν+λ+k,2); cy2 (2.2) Ψ ×k,2 3(cid:20) (ν+1,λ1),(ν+λ,2),(k(1+λ+µ+2ν),4k); 4 (cid:21) where Ψ denote the k-Fox-Wright function [26] k,2 3 Proof. By applying (1.4) to the LHS of (2.2) and interchanging the order of inte- gration and summation, which is verified by uniform convergence of the involved series under the given conditions , we obtain SOME UNIFIED INTEGRALS OF GENERALIZED K-BESSEL FUNCTION 5 ∞ −λ xy xµ−1 x+a+ x2+2ax Jc,γ,λ1 dx Z0 (cid:16) p (cid:17) k,υ (cid:18)x+a+√x2+2ax(cid:19) ∞ −λ = xµ−1 x+a+ x2+2ax Z0 (cid:16) p (cid:17) ∞ (c)n(γ) xy υ+2n −(υ+2n) n,k 2 x+a+ x2+2ax dx ×nX=0Γk λ1n+υ+ b+21 (cid:0) (n(cid:1)!)2 (cid:16) p (cid:17) ∞ ((cid:0)c)n(γ) (cid:1)y υ+2n = n,k 2 nX=0Γk λ1n+υ+ b+21 (cid:0)((cid:1)n!)2 ∞ (cid:0) (cid:1) −(λ+υ+2n) x(µ+υ+2n)−1 x+a+ x2+2ax dx ×Z0 (cid:16) p (cid:17) Applying (1.11) to the integrand of (2.2) ,we obtain the following expression: ∞ (c)n(γ) y υ+2n a µ+υ+2n = n,k 2 2(λ+υ+2n)a−(λ+υ+2n) nX=0Γk λ1n+υ+ b+21 (cid:0)((cid:1)n!)2 (cid:16)2(cid:17) (cid:0) (cid:1) Γ(2µ+2ν+4n)Γ(λ µ) − × Γ(1+λ+2ν+µ+4n) By making the use of (1.12), we obtain = 21−2ν−µyνaµ−λkλ−µ+1Γ(λ µ) − ∞ (γ)n,kΓk(λ+ν+k+2n)Γk(2µk+2νk+4nk) cy2 n × (n!)2Γ λ n+υ+ b+1 Γ (λ+ν+2n)Γ ((1+λ+µ+2υ+4n)k)(cid:18) 4 (cid:19) kX−0 k 1 2 k k which is the desire(cid:0)d result. (cid:1) (cid:3) Corollary 3. Let the conditions given in Theorem 2 satisfied and set k = λ = 1 1,and c= c Theorem 2 reduces to − ∞ −λ xy xµ−1 x+a+ x2+2ax Jc,γ,1 dx Z0 (cid:16) p (cid:17) 1,υ (cid:18)x+a+√x2+2ax(cid:19) = 21−2ν−µyνaµ−λΓ(λ µ) − (2µ+2ν,4),(ν+λ+1,2); cy2 Ψ ×2 3(cid:20) ν+ b+21,λ1 ,(ν+λ,2),(1+λ+µ+2ν,4); 4 (cid:21) (cid:0) (cid:1) which is the result given by [12] . Corollary 4. setting b=c=1 in (2.1) with some appropriate parameter replace- ments, we get the integral formula of Bessel function J (z) given by Choi and υ Agarwal [11]. Conclusion The integral formulas for generalized modified k Bessel function of first kind is − derivedandtheresultsareexpressedintermofgeneralizedk Wrightfunction.Some − of interesting special cases also derivedfrom the main results. Using some suitable parametric replacement, theorems 1 and 2 gives the unified integralrepresentation of generalized Bessel function, if c = 1 and integral representation of modified − Bessel function by , if c=1 . 6 K.S.NISARANDS.R.MONDAL References [1] S.Pincherle,SullefunzioniipergeometrichegeneralizzateNotaI,AttidellaRealeAccademia dei Lincei. Rendiconti dellaClassedi Scienze Fisiche, Matematiche e Naturali, Serie4, Vol. 4(1888), 694–700 [2] Pincherle, S: Sulle funzioni ipergeometriche generalizzate. Nota I-II. In: Opere Scelte-I, UnioneMatematicaItaliana,Ed.Cremonese,Rome(1954), 223-239. [3] Mainardi,F,Pagnini,G,Pincherle,S:ThepioneeroftheMellin-Barnesintegrals.J.Comput. Appl.Math.153,(2003),331-342. [4] Barnes,EW:Anewdevelopmentofthetheoryofthehypergeometricfunctions.Proc.Lond. Math.Soc.6,141-177,(1908) [5] Mellin,HM:AbrißeinereinheitlichentheoriederGammaundderhypergeometrischenfunk- tionen.Math.Ann.68,305-337(1910) [6] Cahen,E:SurlafonctionξσdeRiemannetsurdesfonctionsanalogues.Ann.Sci.E´c.Norm. Super.11,75-164,(1894) [7] Brychkov,YA:Handbookofspecialfunctions: derivatives,integrals,seriesandotherformu- las.CRCPress,BocaRaton,(2008) [8] Choi, J, Hasanov, A, Srivastava, HM, Turaev, M: Integral representations for Srivastava’s triplehypergeometricfunctions.Taiwan.J.Math.15,2751-2762(2011) [9] Garg, M, Mittal, S: On a new unified integral. Proc. Indian Acad. Sci. Math. Sci. 114(2), 99-101(2003) [10] Ali,S:Onsomenewunifiedintegrals.Adv.Comput.Math.Appl.1(3), 151-153(2012) [11] JunesangChoi,PraveenAgarwal,Certainunifiedintegralsassociated withBesselfunctions, BoundaryValueProblems2013,2013:95 [12] J.Choi, P.Agarwal,S.Mathur and S.D.Purohit, Certain new integral formulas involving the generalizedBesselfunctions,Bull.KoreanMath.Soc.,4(51),2014, 995-1003. [13] L.G.Romero,G.A.DorregoandR.A.Cerutti,Thek-Besselfunctionoffirstkind,International Mathematicalforum,38(7),1859-1854. [14] Oberhettinger,F:TablesofMellinTransforms.Springer,NewYork(1974) [15] Watson,GN:ATreatiseontheTheoryofBesselFunctions.CambridgeMathematicalLibrary Edition.CamdridgeUniversityPress,Camdridge(1995). Reprinted(1996) [16] A.Erd´elyi,W.Magnus,F.OberhettingerandF.G.Tricomi,Highertranscendentalfunctions. Vols. I, II,McGraw-HillBookCompany, Inc.,NewYork,1953. NewYork,Toronto, London, 1953. [17] C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London. Math.Soc.27(1928), no.4,389-400. [18] E.M.Wright,TheasymptoticexpansionofintegralfunctionsdefinedbyTaylorseries,Philos. Trans.Roy.Soc.London, Ser.A.238(1940), 423–451. [19] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. LondonMath.Soc.(2)46(1940), 389-408. [20] A.A.KilbasandM.Saigo,H-transforms, Chapman&Hall/CRC,BocaRaton,FL,2004. [21] A. A. Kilbas, M. Saigo and J. J. Trujillo, On the generalized Wright function, Fract. Calc. Appl.Anal.5(2002), no.4,437–460. [22] A. A. Kilbas and N. Sebastian, Generalized fractional integration of Bessel function of the firstkind,IntegralTransformsSpec.Funct.19(2008), no.11-12,869–883. [23] A.A.KilbasandN.Sebastian,FractionalintegrationoftheproductofBesselfunctionofthe firstkind,Fract.Calc.Appl.Anal.13(2010), no.2,159–175. [24] E.D.Rainville,Special functions,Macmillan,NewYork,1960. [25] R.DiazandE.Pariguan,Onhypergeometricfunctions andk−Pochhammersymbol,Divul- gacionesMathematicas, Vol.15,2(2007), pp179-192. [26] R. A. Cerutti, On the k−Bessel functions, International Mathematical forum, Vol. 7, 38(2012), pp.1851-1857. SOME UNIFIED INTEGRALS OF GENERALIZED K-BESSEL FUNCTION 7 DepartmentofMathematics,CollegeofArts&Science-WadiAddwaser,PrinceSat- tambinAbdulaziz University,SaudiArabia E-mail address: [email protected] Department of Mathematics, College of Science-Al Ahsa, King Faisal University, SaudiArabia E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.