ebook img

Cauchy Problem for Differential Operators with Double Characteristics: Non-Effectively Hyperbolic Characteristics PDF

215 Pages·2017·2.434 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cauchy Problem for Differential Operators with Double Characteristics: Non-Effectively Hyperbolic Characteristics

Lecture Notes in Mathematics 2202 Tatsuo Nishitani Cauchy Problem for Differential Operators with Double Characteristics Non-Effectively Hyperbolic Characteristics Lecture Notes in Mathematics 2202 Editors-in-Chief: Jean-MichelMorel,Cachan BernardTeissier,Paris AdvisoryBoard: MichelBrion,Grenoble CamilloDeLellis,Zurich AlessioFigalli,Zurich DavarKhoshnevisan,SaltLakeCity IoannisKontoyiannis,Athens GáborLugosi,Barcelona MarkPodolskij,Aarhus SylviaSerfaty,NewYork AnnaWienhard,Heidelberg Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Tatsuo Nishitani Cauchy Problem for Differential Operators with Double Characteristics Non-Effectively Hyperbolic Characteristics 123 TatsuoNishitani DepartmentofMathematics OsakaUniversity Toyonaka,Osaka Japan ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-319-67611-1 ISBN978-3-319-67612-8 (eBook) DOI10.1007/978-3-319-67612-8 LibraryofCongressControlNumber:2017954399 MathematicsSubjectClassification(2010):35L15,35L30,35B30,35S05,34M40 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Inthe early1970s,V.Ja. Ivriiand V.M.Petkovintroducedthefundamentalmatrix F , which is now called the Hamilton map, at double characteristic points of the p principal symbol p of a differential operator P and proved that if the Cauchy problem for P is C1 well-posed for any lower order term then at every double characteristic point F has non-zero real eigenvalues; such characteristic is now p called effectively hyperbolic. If no real eigenvalue exist, that is non-effectively hyperbolic, they proved, under some restrictions, the subprincipal symbol must lie in some interval on the real line for the Cauchy problem to be C1 well- posed. This necessary condition for the C1 well-posedness at non-effectively hyperbolic characteristic point was completed soon afterwards and is now called theIvrii–Petkov–Hörmandercondition(IPHconditionforshort).Inthismonograph we provide a general picture of the Cauchy problem for differential operators with double characteristics exposing well/ill-posed results of the Cauchy problem withnon-effectivelyhyperboliccharacteristicsobtainedsince1980s,with detailed proofs. Thismonographisorganizedasfollows.InChap.1,aftergivingabriefoverview on the C1 well-posedness of the Cauchy problem and a quick introduction to pseudodifferential operators we review basic results and notion about hyperbolic doublecharacteristics.In Chap.2, wepresentdetaileddiscussionsonthe behavior of principal symbols p near non-effectively hyperbolic characteristics. We prove that p admits a nice microlocal factorization for deriving energy estimates if the cubeofsomespecifiedvectorfieldannihilatesp.InChap.3weprovethatpadmits this factorization if and only if there is no bicharacteristic tangent to the double characteristicmanifold.InChap.4weproposeenergyestimatessuchthatifatevery point(cid:2)inthephasespacethereisP(cid:2) coincidingwithPinaconicneighborhoodof (cid:2) for which these proposedenergyestimates holdthen the Cauchy problemfor P is locally solvable. In Chap.5 we provemain results on the well-posednessof the Cauchyproblemwhichcouldbestated:ifthereisnotangentbicharacteristicsand notransitionofthespectraltypeof F thentheCauchyproblemisC1 well-posed p underthe strict IHP condition.In Chap.6 we exhibitan example of second order differentialoperatorwithpolynomialcoefficients,verifyingtheLevicondition,with v vi Preface tangent bicharacteristic and no transition of the spectral type of F for which the p Cauchyproblemisill-posedintheGevreyclassoforders > 5,andofcourseC1 ill-posed. In Chap.7 we confirm the optimality of this Gevrey class proving that the Cauchy problem for P is well-posed in the Gevrey class of order 5 under the Levicondition,assumingno transitionof the spectraltype.Finally in Chap.8, for thesameoperatorstudiedinChap.6,weprovethattheCauchyproblemisC1 ill- posed for any choice of lower order term, more strongly, ill-posed in the Gevrey classoforders>6foranylowerorderterm. OtsuinDecember2016 TatsuoNishitani Contents 1 Introduction .................................................................. 1 1.1 CauchyProblem,anOverview......................................... 1 1.2 SobolevSpaces.......................................................... 5 1.3 PseudodifferentialOperators ........................................... 6 1.4 AReviewonHyperbolicDoubleCharacteristics ..................... 9 1.5 HyperbolicQuadraticFormsonaSymplecticVectorSpace.......... 16 2 Non-effectivelyHyperbolicCharacteristics............................... 25 2.1 CaseofSpectralType1................................................. 25 2.2 CaseofSpectralType2................................................. 31 2.3 VectorFieldH andKeyFactorization................................. 35 S 3 GeometryofBicharacteristics.............................................. 43 3.1 BehaviorsofBicharacteristics.......................................... 43 3.2 ExpressionofpasAlmostSymplecticallyIndependentSums ....... 47 3.3 Reduction of the Hamilton Equation to a Coupling SystemofODE.......................................................... 53 3.4 ExistenceofTangentBicharacteristics................................. 59 3.5 TransversalBicharacteristics........................................... 64 4 MicrolocalEnergyEstimatesandWell-Posedness ....................... 71 4.1 ParametrixwithFinitePropagationSpeedofMicroSupports........ 71 4.2 EnergyEstimate.E/andExistenceofParametrix.................... 79 4.3 EnergyEstimate.E/andFinitePropagationSpeedofMicro Supports ................................................................. 90 5 CauchyProblem:NoTangentBicharacteristics.......................... 95 5.1 MainResultsonWell-Posedness....................................... 95 5.2 EnergyIdentity.......................................................... 98 5.3 MicrolocalEnergyEstimates,SpectralType1 ........................ 101 5.4 MicrolocalEnergyEstimates,SpectralType2 ........................ 107 5.5 CaseofSpectralType2withZeroPositiveTrace..................... 112 5.6 CaseofSpectralType1withZeroPositiveTrace..................... 116 vii viii Contents 5.7 ProofofMainResults................................................... 120 5.8 Melin-HörmanderInequality........................................... 123 6 TangentBicharacteristicsandIll-Posedness.............................. 129 6.1 NonSolvabilityinC1 andintheGevreyClasses .................... 129 6.2 ConstructionofSolutions,ZerosofStokesMultipliers............... 131 6.3 ProofofNonSolvabilityoftheCauchyProblem ..................... 137 6.4 OpenQuestionsandRemarks.......................................... 141 7 CauchyProblemintheGevreyClasses.................................... 149 7.1 PseudodifferentialOperators,Revisited ............................... 149 7.2 PseudodifferentialWeightsandFactorization ......................... 151 7.3 ALemmaonCompositionwithe˙hDi(cid:3) ................................ 159 7.4 WeightedEnergyEstimates ............................................ 165 7.5 Well-PosednessintheGevreyClasses................................. 171 8 Ill-PosedCauchyProblem,Revisited...................................... 181 8.1 Preliminaries ............................................................ 181 8.2 AsymptoticSolutions................................................... 183 8.3 EstimatesofAsymptoticSolutions,Majorant......................... 186 8.4 APrioriEstimatesintheGevreyClasses.............................. 191 8.5 ProofofIll-PosedResults .............................................. 194 8.6 NonStrictIPHCondition,AnExample ............................... 197 References......................................................................... 203 Index............................................................................... 209 Chapter 1 Introduction Abstract Inthischapter,afterquicklyreviewingthebackgroundwhichmotivates to prepare this monograph we state basic facts on pseudodifferential operators withoutproofs,exceptforafewresults.WethenrecallbasicresultsontheCauchy problemfordifferentialoperatorswithdoublecharacteristics,includingbasicnotion and resultsaboutdoublecharacteristicsof hyperbolicpolynomialsand hyperbolic quadraticformswhichwillbeusedthroughoutthemonograph. 1.1 CauchyProblem, an Overview LetPbea differentialoperatoroforderm definedinaneighborhoodofxN 2 RnC1 andlett Dt.x/bearealvaluedsmoothfunctiongiveninaneighborhoodofxN with t.xN/ D 0.WeassumethatPisnon-characteristicwithrespecttoH D ft.x/ D0gat xN,thatis.Ptm/.xN/ ¤ 0.Letu0.x/;:::;um(cid:2)1.x/bem-tuplesofsmoothfunctionson H definednear xN then the Cauchy problemis that of findingu, in a neighborhood of xN, satisfying Pu D 0 near xN and .@=@(cid:4)/ju.x/ D u.x/, j D 0;:::;m(cid:2)1 on H j where(cid:4) istheunitnormaltoH.Here.u0;:::;um(cid:2)1/iscalledtheinitialdataorthe Cauchydata.Roughlyspeaking,theCauchyproblemissaidtobeE well-posedin thedirectiontifforanyinitialdatainE,whichisafunctionspacegivenbeforehand, thereexistsa uniquesolutionto theCauchyproblem,andthedifferentialoperator forwhichtheCauchyproblemiswell-posedinthedirectiontiscalledhyperbolicin thisdirection.ChoosingasystemoflocalcoordinatesxD.x0;x0/D.x0;x1;:::;xn/ sothatt.x/Dx0,xN D0anddividingPbyanonvanishingfunctionwehave X Xm PDDm0 C a˛.x/D˛ D Pj j˛j(cid:3)m;˛0<m jD0 P in these coordinates where Pj D j˛jDja˛.x/D˛ denotes the homogeneous part of P of degree j and D D .D0;D0/ D .D0;D1;:::;Dn/, Dj D (cid:2)i@=@xj, D˛ D D˛00(cid:3)(cid:3)(cid:3)D˛nn, ˛ D .˛0;:::;˛n/ 2 NnC1. The homogeneous polynomial in ©SpringerInternationalPublishingAG2017 1 T.Nishitani,CauchyProblemforDifferentialOperatorswithDouble Characteristics,LectureNotesinMathematics2202, DOI10.1007/978-3-319-67612-8_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.