Lecture Notes in Mathematics 2202 Tatsuo Nishitani Cauchy Problem for Differential Operators with Double Characteristics Non-Effectively Hyperbolic Characteristics Lecture Notes in Mathematics 2202 Editors-in-Chief: Jean-MichelMorel,Cachan BernardTeissier,Paris AdvisoryBoard: MichelBrion,Grenoble CamilloDeLellis,Zurich AlessioFigalli,Zurich DavarKhoshnevisan,SaltLakeCity IoannisKontoyiannis,Athens GáborLugosi,Barcelona MarkPodolskij,Aarhus SylviaSerfaty,NewYork AnnaWienhard,Heidelberg Moreinformationaboutthisseriesathttp://www.springer.com/series/304 Tatsuo Nishitani Cauchy Problem for Differential Operators with Double Characteristics Non-Effectively Hyperbolic Characteristics 123 TatsuoNishitani DepartmentofMathematics OsakaUniversity Toyonaka,Osaka Japan ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-319-67611-1 ISBN978-3-319-67612-8 (eBook) DOI10.1007/978-3-319-67612-8 LibraryofCongressControlNumber:2017954399 MathematicsSubjectClassification(2010):35L15,35L30,35B30,35S05,34M40 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Inthe early1970s,V.Ja. Ivriiand V.M.Petkovintroducedthefundamentalmatrix F , which is now called the Hamilton map, at double characteristic points of the p principal symbol p of a differential operator P and proved that if the Cauchy problem for P is C1 well-posed for any lower order term then at every double characteristic point F has non-zero real eigenvalues; such characteristic is now p called effectively hyperbolic. If no real eigenvalue exist, that is non-effectively hyperbolic, they proved, under some restrictions, the subprincipal symbol must lie in some interval on the real line for the Cauchy problem to be C1 well- posed. This necessary condition for the C1 well-posedness at non-effectively hyperbolic characteristic point was completed soon afterwards and is now called theIvrii–Petkov–Hörmandercondition(IPHconditionforshort).Inthismonograph we provide a general picture of the Cauchy problem for differential operators with double characteristics exposing well/ill-posed results of the Cauchy problem withnon-effectivelyhyperboliccharacteristicsobtainedsince1980s,with detailed proofs. Thismonographisorganizedasfollows.InChap.1,aftergivingabriefoverview on the C1 well-posedness of the Cauchy problem and a quick introduction to pseudodifferential operators we review basic results and notion about hyperbolic doublecharacteristics.In Chap.2, wepresentdetaileddiscussionsonthe behavior of principal symbols p near non-effectively hyperbolic characteristics. We prove that p admits a nice microlocal factorization for deriving energy estimates if the cubeofsomespecifiedvectorfieldannihilatesp.InChap.3weprovethatpadmits this factorization if and only if there is no bicharacteristic tangent to the double characteristicmanifold.InChap.4weproposeenergyestimatessuchthatifatevery point(cid:2)inthephasespacethereisP(cid:2) coincidingwithPinaconicneighborhoodof (cid:2) for which these proposedenergyestimates holdthen the Cauchy problemfor P is locally solvable. In Chap.5 we provemain results on the well-posednessof the Cauchyproblemwhichcouldbestated:ifthereisnotangentbicharacteristicsand notransitionofthespectraltypeof F thentheCauchyproblemisC1 well-posed p underthe strict IHP condition.In Chap.6 we exhibitan example of second order differentialoperatorwithpolynomialcoefficients,verifyingtheLevicondition,with v vi Preface tangent bicharacteristic and no transition of the spectral type of F for which the p Cauchyproblemisill-posedintheGevreyclassoforders > 5,andofcourseC1 ill-posed. In Chap.7 we confirm the optimality of this Gevrey class proving that the Cauchy problem for P is well-posed in the Gevrey class of order 5 under the Levicondition,assumingno transitionof the spectraltype.Finally in Chap.8, for thesameoperatorstudiedinChap.6,weprovethattheCauchyproblemisC1 ill- posed for any choice of lower order term, more strongly, ill-posed in the Gevrey classoforders>6foranylowerorderterm. OtsuinDecember2016 TatsuoNishitani Contents 1 Introduction .................................................................. 1 1.1 CauchyProblem,anOverview......................................... 1 1.2 SobolevSpaces.......................................................... 5 1.3 PseudodifferentialOperators ........................................... 6 1.4 AReviewonHyperbolicDoubleCharacteristics ..................... 9 1.5 HyperbolicQuadraticFormsonaSymplecticVectorSpace.......... 16 2 Non-effectivelyHyperbolicCharacteristics............................... 25 2.1 CaseofSpectralType1................................................. 25 2.2 CaseofSpectralType2................................................. 31 2.3 VectorFieldH andKeyFactorization................................. 35 S 3 GeometryofBicharacteristics.............................................. 43 3.1 BehaviorsofBicharacteristics.......................................... 43 3.2 ExpressionofpasAlmostSymplecticallyIndependentSums ....... 47 3.3 Reduction of the Hamilton Equation to a Coupling SystemofODE.......................................................... 53 3.4 ExistenceofTangentBicharacteristics................................. 59 3.5 TransversalBicharacteristics........................................... 64 4 MicrolocalEnergyEstimatesandWell-Posedness ....................... 71 4.1 ParametrixwithFinitePropagationSpeedofMicroSupports........ 71 4.2 EnergyEstimate.E/andExistenceofParametrix.................... 79 4.3 EnergyEstimate.E/andFinitePropagationSpeedofMicro Supports ................................................................. 90 5 CauchyProblem:NoTangentBicharacteristics.......................... 95 5.1 MainResultsonWell-Posedness....................................... 95 5.2 EnergyIdentity.......................................................... 98 5.3 MicrolocalEnergyEstimates,SpectralType1 ........................ 101 5.4 MicrolocalEnergyEstimates,SpectralType2 ........................ 107 5.5 CaseofSpectralType2withZeroPositiveTrace..................... 112 5.6 CaseofSpectralType1withZeroPositiveTrace..................... 116 vii viii Contents 5.7 ProofofMainResults................................................... 120 5.8 Melin-HörmanderInequality........................................... 123 6 TangentBicharacteristicsandIll-Posedness.............................. 129 6.1 NonSolvabilityinC1 andintheGevreyClasses .................... 129 6.2 ConstructionofSolutions,ZerosofStokesMultipliers............... 131 6.3 ProofofNonSolvabilityoftheCauchyProblem ..................... 137 6.4 OpenQuestionsandRemarks.......................................... 141 7 CauchyProblemintheGevreyClasses.................................... 149 7.1 PseudodifferentialOperators,Revisited ............................... 149 7.2 PseudodifferentialWeightsandFactorization ......................... 151 7.3 ALemmaonCompositionwithe˙hDi(cid:3) ................................ 159 7.4 WeightedEnergyEstimates ............................................ 165 7.5 Well-PosednessintheGevreyClasses................................. 171 8 Ill-PosedCauchyProblem,Revisited...................................... 181 8.1 Preliminaries ............................................................ 181 8.2 AsymptoticSolutions................................................... 183 8.3 EstimatesofAsymptoticSolutions,Majorant......................... 186 8.4 APrioriEstimatesintheGevreyClasses.............................. 191 8.5 ProofofIll-PosedResults .............................................. 194 8.6 NonStrictIPHCondition,AnExample ............................... 197 References......................................................................... 203 Index............................................................................... 209 Chapter 1 Introduction Abstract Inthischapter,afterquicklyreviewingthebackgroundwhichmotivates to prepare this monograph we state basic facts on pseudodifferential operators withoutproofs,exceptforafewresults.WethenrecallbasicresultsontheCauchy problemfordifferentialoperatorswithdoublecharacteristics,includingbasicnotion and resultsaboutdoublecharacteristicsof hyperbolicpolynomialsand hyperbolic quadraticformswhichwillbeusedthroughoutthemonograph. 1.1 CauchyProblem, an Overview LetPbea differentialoperatoroforderm definedinaneighborhoodofxN 2 RnC1 andlett Dt.x/bearealvaluedsmoothfunctiongiveninaneighborhoodofxN with t.xN/ D 0.WeassumethatPisnon-characteristicwithrespecttoH D ft.x/ D0gat xN,thatis.Ptm/.xN/ ¤ 0.Letu0.x/;:::;um(cid:2)1.x/bem-tuplesofsmoothfunctionson H definednear xN then the Cauchy problemis that of findingu, in a neighborhood of xN, satisfying Pu D 0 near xN and .@=@(cid:4)/ju.x/ D u.x/, j D 0;:::;m(cid:2)1 on H j where(cid:4) istheunitnormaltoH.Here.u0;:::;um(cid:2)1/iscalledtheinitialdataorthe Cauchydata.Roughlyspeaking,theCauchyproblemissaidtobeE well-posedin thedirectiontifforanyinitialdatainE,whichisafunctionspacegivenbeforehand, thereexistsa uniquesolutionto theCauchyproblem,andthedifferentialoperator forwhichtheCauchyproblemiswell-posedinthedirectiontiscalledhyperbolicin thisdirection.ChoosingasystemoflocalcoordinatesxD.x0;x0/D.x0;x1;:::;xn/ sothatt.x/Dx0,xN D0anddividingPbyanonvanishingfunctionwehave X Xm PDDm0 C a˛.x/D˛ D Pj j˛j(cid:3)m;˛0<m jD0 P in these coordinates where Pj D j˛jDja˛.x/D˛ denotes the homogeneous part of P of degree j and D D .D0;D0/ D .D0;D1;:::;Dn/, Dj D (cid:2)i@=@xj, D˛ D D˛00(cid:3)(cid:3)(cid:3)D˛nn, ˛ D .˛0;:::;˛n/ 2 NnC1. The homogeneous polynomial in ©SpringerInternationalPublishingAG2017 1 T.Nishitani,CauchyProblemforDifferentialOperatorswithDouble Characteristics,LectureNotesinMathematics2202, DOI10.1007/978-3-319-67612-8_1