Carbon Nanotube Enhanced Aerospace Composite Materials SOLID MECHANICS AND ITS APPLICATIONS Volume 188 Series Editor: G.M.L. GLADWELL Department of Civil Engineering University of Waterloo Waterloo, Ontario, Canada N2L 3GI Aims and Scope of the Series The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchersgivingvisionandinsightinansweringthesequestionsonthesubjectof mechanics as it relates to solids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics;statics,kinematicsanddynamicsofrigidandelasticbodies:vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and mem- branes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design. Themedianlevelofpresentationisthefirstyeargraduatestudent.Sometextsare monographsdefiningthecurrentstateofthefield;othersareaccessibletofinalyear undergraduates; but essentially the emphasis is on readability and clarity. For furthervolumes: http://www.springer.com/series/6557 A.S. Paipetis (cid:129) V. Kostopoulos Editors Carbon Nanotube Enhanced Aerospace Composite Materials A New Generation of Multifunctional Hybrid Structural Composites Editors A.S.Paipetis V.Kostopoulos MaterialsScienceandEngineering MechanicalEngineeringandAeronautics UniversityofIoannina UniversityofPatras Ioannina,Greece Patras,Greece ISSN0925-0042 ISBN978-94-007-4245-1 ISBN978-94-007-4246-8(eBook) DOI10.1007/978-94-007-4246-8 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2012948001 #SpringerScience+BusinessMediaDordrecht2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The well-documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising demands on manufacturers in terms of dynamic performance, structural integrity, reliable life monitoringsystemsandadaptiveactuatingabilities.Currenttechnologiesarenow addressing the above issues separately; material property tailoring and custom designpracticesarebeingaimedatenhancementofdynamicanddamagetolerance characteristics;atthesametime,lifemonitoringandactuationisbeingperformed withembeddedsensors/actuatorsthatmayprovetobedetrimentaltothestructural integrityofcomponents. Thiscontributedvolumefocusesoncurrentresearchontheuniqueproperties of carbon nanotubes (CNTs) as an additive in the matrix of Fibre-Reinforced Plastics (FRPs), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The development of new generation composites using CNTs as an additional phase within the matrix is expected to result in enhancement of the damping properties of materials, increased fracture toughness and extension of their individual fatigue life. This is expected to occur due to the multiplicity of energy dispersive mechanisms withinmaterials.Atthesametime,thepercolatedCNTnetworkwithinacompos- iteisexpected(1)tobestrainsensitiveand(2)closelyrelatedtointernaldamage mechanismswithinthematerial,providingthusasensingandlife-assessmenttool throughout the service life of the material. The electromechanical response of CNTs may also provide a field for the design of actuating systems comprised of CNT structures of varying degrees of anisotropy that will be incorporated in the composite. Additionally, dependence of the Raman shift on the local stress ofCNTscanprovideuniqueinsightsintostressfieldsatnanoscalelevelandtheir interactionwiththemacroscale. The successful combination of CNT properties and existing sensing actuating technologieshasledtorealizationofamultifunctionalFRPstructure.Thecurrent volumepresentsthestateoftheartresearchinthefield.Thecontributionscoverkey v vi Preface aspects of novel composite systems, i.e. modeling from nanoscale to macroscale, enhancementofstructuralefficiency,dispersionandmanufacturing,integralhealth monitoringabilities, Raman monitoring,anddurability,aswellasthe capabilities that ordered carbon nanotube arrays offer in terms of sensing and/or actuating in aerospacecomposites. June2011 AlkisS.PaipetisandVassilisKostopoulos Contents 1 CarbonNanotubesforNovelHybridStructuralComposites withEnhancedDamageToleranceandSelf-Sensing/Actuating Abilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A.S.PaipetisandV.Kostopoulos 2 OntheUseofElectricalConductivityfortheAssessment ofDamageinCarbonNanotubesEnhancedAerospace Composites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 AntoniosI.VavouliotisandVassilisKostopoulos 3 CarbonNanotubeStructureswithSensingandActuating Capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 C.Jaillet,N.D.Alexopoulos,andP.Poulin 4 MechanicalDispersionMethodsforCarbonNanotubes inAerospaceCompositeMatrixSystems. . . . . . . . . . . . . . . . . . . . . 99 SergiyGrishchukandRalfSchledjewski 5 ChemicalFunctionalizationofCarbonNanotubesforDispersion inEpoxyMatrices. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 155 DimitriosJ.Giliopoulos,KostasS.Triantafyllidis,and DimitriosGournis 6 StressInducedChangesintheRamanSpectrumofCarbon NanostructuresandTheirComposites. . . . . . . . . . . . . . . . . . . . . . . 185 A.S.Paipetis vii viii Contents 7 MechanicalandElectricalResponseModelsofCarbon Nanotubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 T.C.TheodosiouandD.A.Saravanos 8 ImprovedDamageTolerancePropertiesofAerospaceStructures bytheAdditionofCarbonNanotubes. . . . . . . . . . . . . . . . . . . . . . . 267 PetrosKarapappasandPanayotaTsotra 9 EnvironmentalDegradationofCarbonNanotubeHybrid AerospaceComposites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Nektaria-MarianthiBarkoula Chapter 1 Carbon Nanotubes for Novel Hybrid Structural Composites with Enhanced Damage Tolerance and Self-Sensing/Actuating Abilities A.S.PaipetisandV.Kostopoulos Contents 1.1 Introduction................................................................................. 2 1.2 NovelCompositeSystemsforStructuralEnhancement.................................. 4 1.3 NovelCompositeSystemsforStructuralHealthMonitoring............................. 6 1.4 TheRoadmaptoAdvancedHybridCompositeSystems................................. 11 References........................................................................................ 16 Abstract Damagetolerance, reliability,andsensing/actuating abilitiesare within the forefront of research for aerospace composite materials and structures. The scopeofthischapteristoidentifythepotentialapplicationofincorporatingcarbon nanotubes(CNTs)innovelhybridmaterialsystems.CNTsmaybeemployedasan additive in the matrix of Fibre Reinforced Plastics (FRP) for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities.Thenovelmulti-scalereinforcedcompositematerialsarebydefinition multifunctionalasthey combine betterstructuralperformancewith smart features thatmayincludestrainmonitoring,damagesensingandevenactuationcapabilities. This introductory chapter provides an overview of the concepts and technologies relatedtothehierarchicalcompositesystemsthatwillbeelaboratedinthefollow- ing chapters, i.e. modelling, enhancement of structural efficiency, dispersion and manufacturing, integral health monitoring abilities, Raman monitoring, as well as thecapabilitiesthatorderedcarbonnanotubearraysofferintermsofsensingand/or actuatinginaerospacecomposites. A.S.Paipetis(*) DepartmentofMaterialsEngineering,UniversityofIoannina,45110Ioannina,Greece e-mail:[email protected] V.Kostopoulos AppliedMechanicsLaboratory,DepartmentofMechanicalEngineeringandAeronautics, UniversityofPatras,26500Patras,Greece e-mail:[email protected] A.S.PaipetisandV.Kostopoulos(eds.),CarbonNanotubeEnhanced 1 AerospaceCompositeMaterials,SolidMechanicsandItsApplications188, DOI10.1007/978-94-007-4246-8_1,#SpringerScience+BusinessMediaDordrecht2013 2 A.S.PaipetisandV.Kostopoulos Keywords Aerospace composite materials • Multifunctional materials • Carbon nanotubes•Damagetolerance•Structuralhealthmonitoring 1.1 Introduction Currentaerospacetechnologyismorethaneverfocusingonstretchingtheproperties ofadvancedmaterialstowardstheirlimits.Advancedaerospacecompositematerials havereached excellentspecific properties. A route towardsfurther exploitingadva- ncedstructuralmaterialisbyusingenablingtechnologiesforadditionalfunctionalities, without compromising structural integrity. In the past few years, novel materials such as carbon nanotubes (CNTs) and related technologies have posed a strong candidacyforprovidinganintegratedapproachtowardsenhancedstructuralintegrity andmultifunctionality. CNTspossessexcellentpropertiesintermsofstiffness,strength,andconductiv- ity,andtheyhaveexhibitedpromisingpropertiesintermsofactuation.Inprinciple, CNTsmaybeemployedfortherealizationofanewgenerationofnano-reinforced composite systems which could potentially replace “conventional composites” in aerospace and other applications. However, being a nano-scale reinforcement, CNTs lack the typical advantages of fibres or of reinforcement at the micron scale, in that they cannot be easily “tailored” to benefit most of their properties byinducingacontrolledanisotropyinthestructure. Tothisend,theconceptof“hybrid”ormulti-scalecompositehasbeendeveloped (Fig. 1.1). Novel hybrid or hierarchical composite systems may benefit from the advantagesoftraditionalstructuralcompositesand,atthesametime,gaininproper- ties and functionalities for the incorporation of CNTs as additives in their matrix (BaurandSilverman2007).InordertobenefitfromtheuseofCNTsinconventional fibrouscomposites,threedifferentlevelsofcomplexitymaybeapplied. 1. Nano-Augmentation,meaningthatbyrandomlyandhomogeneouslydispersing CNTs into the matrix material, and following the already used manufacturing routes,improvedmultifunctionalcompositesmayberealised. 2. Nano-Engineering,meaningthatbyusingorganizedCNTstructures,suchas1D in fibre form, 2D in the form of bucky papers or aligned CNTs in plane form or3DintheformofCNTforestsorotherspecialstructuresandintroducingthem inthecompositelaminate,improvementofsomecharacteristicsoftheirmech- anical performance as well as additional functionalities can be introduced into conventionallaminates. 3. Nano-Design,meaningthatstartingfromthemultifunctionalperformanceenve- lope of the composite and having available the entire span of numerical tools fromthemoleculardynamicuptomacro-scalemulti-physics,wemaydesignan appropriatemulti-scalehybridcompositeinordertoservethespecific applica- tionneeds. Thepossibilitiesofferedbythehierarchicalapproachmaybesummarizedinthe followingtwoprinciples;(i)reinforcementatthenanoscalewillenhancethestructural
Description: