ebook img

Camera Networks: The Acquisition and Analysis of Videos over Wide Areas PDF

133 Pages·2016·1.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Camera Networks: The Acquisition and Analysis of Videos over Wide Areas

Camera Networks TheAcquisitionandAnalysisofVideosoverWideAreas Synthesis Lectures on Computer Vision Editors GérardMedioni,UniversityofSouthernCalifornia SvenDickinson,UniversityofToronto SynthesisLecturesonComputerVisioniseditedbyGérardMedionioftheUniversityof SouthernCaliforniaandSvenDickinsonoftheUniversityofToronto.Theserieswillpublish50- to150pagepublicationsontopicspertainingtocomputervisionandpatternrecognition.The scopewilllargelyfollowthepurviewofpremiercomputerscienceconferences,suchasICCV, CVPR,andECCV.Potentialtopicsinclude,butnotarelimitedto: (cid:129) ApplicationsandCaseStudiesforComputerVision (cid:129) Color,Illumination,andTexture (cid:129) ComputationalPhotographyandVideo (cid:129) EarlyandBiologically-inspiredVision (cid:129) FaceandGestureAnalysis (cid:129) IlluminationandReflectanceModeling (cid:129) Image-BasedModeling (cid:129) ImageandVideoRetrieval (cid:129) MedicalImageAnalysis (cid:129) MotionandTracking (cid:129) ObjectDetection,Recognition,andCategorization (cid:129) SegmentationandGrouping (cid:129) Sensors (cid:129) Shape-from-X iii (cid:129) StereoandStructurefromMotion (cid:129) ShapeRepresentationandMatching (cid:129) StatisticalMethodsandLearning (cid:129) PerformanceEvaluation (cid:129) VideoAnalysisandEventRecognition CameraNetworks:TheAcquisitionandAnalysisofVideosoverWideAreas AmitK.Roy-ChowdhuryandBiSong 2011 DeformableSurface3DReconstructionfromMonocularImages MathieuSalzmannandPascalFua 2010 Boosting-BasedFaceDetectionandAdaptation ChaZhangandZhengyouZhang 2010 Image-BasedModelingofPlantsandTrees SingBingKangandLongQuan 2009 Copyright© 2012byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotationsin printedreviews,withoutthepriorpermissionofthepublisher. CameraNetworks:TheAcquisitionandAnalysisofVideosoverWideAreas AmitK.Roy-ChowdhuryandBiSong www.morganclaypool.com ISBN:9781608456741 paperback ISBN:9781608456758 ebook DOI10.2200/S00400ED1V01Y201201COV004 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONCOMPUTERVISION Lecture#4 SeriesEditors:GérardMedioni,UniversityofSouthernCalifornia SvenDickinson,UniversityofToronto SeriesISSN SynthesisLecturesonComputerVision Print2153-1056 Electronic2153-1064 Camera Networks TheAcquisitionandAnalysisofVideosoverWideAreas Amit K.Roy-Chowdhury and Bi Song UniversityofCalifornia,Riverside SYNTHESISLECTURESONCOMPUTERVISION#4 M &C Morgan &cLaypool publishers ABSTRACT Asnetworksofvideocamerasareinstalledinmanyapplicationslikesecurityandsurveillance,envi- ronmentalmonitoring,disasterresponse,andassistedlivingfacilities,amongothers,imageunder- standingincameranetworksisbecominganimportantareaofresearchandtechnologydevelopment. Therearemanychallengesthatneedtobeaddressedintheprocess.Someofthemarelistedbelow. -Traditionalcomputervisionchallengesintrackingandrecognition,robustnesstopose,illumina- tion,occlusion,clutter,recognitionofobjects,andactivities; -Aggregatinglocalinformationforwideareasceneunderstanding,likeobtainingstable,long-term tracksofobjects; - Positioning of the cameras and dynamic control of pan-tilt-zoom (PTZ) cameras for optimal sensing; -Distributedprocessingandsceneanalysisalgorithms; -Resourceconstraintsimposedbydifferentapplicationslikesecurityandsurveillance,environmental monitoring,disasterresponse,assistedlivingfacilities,etc. Inthisbook,wefocusonthebasicresearchproblemsincameranetworks,reviewthecurrent state-of-the-artandpresentadetaileddescriptionofsomeoftherecentlydevelopedmethodologies. The major underlying theme in all the work presented is to take a network-centric view whereby theoveralldecisionsaremadeatthenetworklevel.Thisissometimesachievedbyaccumulatingall thedataatacentralserver,whileatothertimesbyexchangingdecisionsmadebyindividualcameras basedontheirlocallysenseddata. Chapter1startswithanoverviewoftheproblemsincameranetworksandthemajorresearch directions. Some of the currently available experimental testbeds are also discussed here. One of thefundamentaltasksintheanalysisofdynamicscenesistotrackobjects.Sincecameranetworks cover a large area, the systems need to be able to track over such wide areas where there could bebothoverlappingandnon-overlappingfieldsofviewofthecameras,asaddressedinChapter2. Distributedprocessingisanotherchallengeincameranetworksandrecentmethodshaveshownhow todotracking,poseestimationandcalibrationinadistributedenvironment.Consensusalgorithms thatenablethesetasksaredescribedinChapter3.Chapter4summarizesafewapproachesonobject andactivityrecognitioninbothdistributedandcentralizedcameranetworkenvironments.Allthese methods have focused primarily on the analysis side given that images are being obtained by the cameras.Efficientutilizationofsuchnetworksoftencallsforactivesensing,wherebytheacquisition and analysis phases are closely linked.We discuss this issue in detail in Chapter 5 and show how collaborative and opportunistic sensing in a camera network can be achieved. Finally, Chapter 6 concludesthebookbyhighlightingthemajordirectionsforfutureresearch. KEYWORDS wideareatracking,distributedvideoanalysis,Kalmanconsensus,distributedtracking, recognition,activesensing,opportunisticsensing vii Amit:To my parents for all they have done Bi:To my parents ix Contents Preface .................................................................xiii 1 AnIntroductiontoCameraNetworks........................................1 1.1 Researchdirections ..................................................... 1 1.1.1 CameraNetworkTopology ........................................ 1 1.1.2 WideAreaTracking .............................................. 2 1.1.3 DistributedProcessing ............................................ 3 1.1.4 CameraNetworkControl(ACTIVEvision).......................... 4 1.1.5 MobileCameraNetworks ......................................... 5 1.1.6 SimulationinCameraNetworks .................................... 7 1.1.7 ExperimentalTestbeds ............................................ 7 1.1.8 ApplicationDomains ............................................. 8 1.2 Organizationofthebook ................................................ 9 2 Wide-AreaTracking ..................................................... 11 2.1 ReviewofMulti-TargetTrackingApproaches.............................. 11 2.1.1 KalmanFilter-BasedTracker...................................... 12 2.1.2 ParticleFilter-BasedTracker ...................................... 12 2.1.3 Multi-HypothesisTracking(MHT)................................ 13 2.1.4 JointProbabilisticDataAssociationFilters(JPDAF) ................. 14 2.2 TrackinginaCameraNetwork-ProblemFormulation...................... 14 2.3 AReviewonCameraNetworkTracking .................................. 16 2.4 On-LineLearningUsingAffinityModels................................. 17 2.5 TrackletAssociationUsingStochasticSearch .............................. 19 2.6 PersonReidentification ................................................. 24 2.7 LearningaCameraNetworkTopology ................................... 27 2.8 ConsistentLabelingwithOverlappingFieldsofView ...................... 29 2.9 Conclusions .......................................................... 31 3 DistributedProcessinginCameraNetworks................................ 33 3.1 ConsensusAlgorithmsforDistributedEstimation.......................... 33 x 3.2 DecentralizedandDistributedTracking................................... 35 3.2.1 DecentralizedTracking........................................... 35 3.2.2 DistributedTracking............................................. 36 3.3 ConsensusAlgorithmsforDistributedTracking............................ 36 3.3.1 MathematicalFramework ........................................ 36 3.3.2 ExtendedKalman-ConsensusFilterforaSingleTarget ............... 37 3.3.3 JPDA-EKCFforTrackingMultipleTargets ......................... 40 3.3.4 HandoffinConsensusTrackingAlgorithms......................... 44 3.3.5 ExampleofDistributedTrackingusingEKCF ....................... 44 3.3.6 SparseNetworksandNaiveNodes-TheGeneralizedKalman ConsensusFilter .................................................48 3.4 CameraNetworkCalibration............................................ 53 3.4.1 DistributedDataAssociation...................................... 53 3.4.2 DistributedCalibration........................................... 54 3.4.3 DistributedPoseEstimation ...................................... 56 3.5 Conclusions .......................................................... 57 4 ObjectandActivityRecognition .......................................... 59 4.1 ObjectRecognition .................................................... 59 4.1.1 ObjectRecognitionUnderResourceConstraints..................... 60 4.2 Time-DelayedCorrelationAnalysis ...................................... 61 4.2.1 SceneDecompositionandActivityRepresentation ................... 62 4.2.2 CrossCanonicalCorrelationAnalysis .............................. 63 4.2.3 Applications .................................................... 63 4.3 ActivityAnalysisUsingTopicModels .................................... 64 4.3.1 ProbabilisticModel .............................................. 65 4.3.2 LabelingTrajectoriesintoActivities ................................ 66 4.4 DistributedActivityRecognition......................................... 66 4.4.1 ConsensusforActivityRecognition ................................ 67 4.5 Conclusions .......................................................... 71 5 ActiveSensing .......................................................... 73 5.1 ProblemFormulation................................................... 73 5.1.1 ActiveSensingofDynamicalProcesses ............................. 74 5.2 ReviewofExistingApproaches .......................................... 77 5.3 CollaborativeSensinginDistributedCameraNetworks ..................... 78 5.3.1 SystemModeling................................................ 79

Description:
Издательство Morgan & Claypool, 2012, -133 pp.As networks of video cameras are installed in many applications like security and surveillance, environmental monitoring, disaster response, and assisted living facilities, among others, image understanding in camera networks is becoming an i
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.