ebook img

Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy PDF

0.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy

NonamemanuscriptNo. (willbeinsertedbytheeditor) Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy. EdwardRosten · RohanLoveland 9 thedateofreceiptandacceptanceshouldbeinsertedlater 0 0 2 Abstract Inthispaperwepresentasimpleandrobustmethod 1 Introduction n forself-correctionofcameradistortionusingsingleimages a ofsceneswhichcontainstraightlines.Sincethemostcom- 1.1 CameraCalibrationandDistortionCorrection J mon distortion can be modelled as radial distortion, we il- 4 lustratethemethodusingtheHarrisradialdistortionmodel, Cameracalibrationaddressestheproblemoffindingthepa- ] but the method is applicable to any distortion model. The rameters necessary to describe the mapping between 3-D V methodisbasedontransformingtheedgelsofthedistorted world coordinates and 2-D image coordinates. This can be C imagetoa1-DangularHoughspace,andoptimizingthedis- dividedintothedeterminationofextrinsicandintrinsicpa- . tortion correction parameters which minimize the entropy rameters. The extrinsic parameters are necessary to relate s c of the corresponding normalized histogram. Properly cor- an arbitrary 3-D world coordinate system to the internal 3- [ rected imagery will have fewer curved lines, and therefore D camera coordinate system, where the z-axis is typically 2 lessspreadinHoughspace.Sincethemethoddoesnotrely taken to be along the optical axis. The intrinsic parameters v onanyimagestructurebeyondtheexistenceofedgelsshar- are independent of the camera position, and typically in- 6 ingsomecommonorientationsanddoesnotuseedgefitting, cludeafocallength,anoffsetrelatingpixelcoordinatescen- 2 4 itisapplicabletoawidevarietyofimagetypes.Forinstance, ter to the optical center, a scale factor describing the pixel 4 itcanbeappliedequallywelltoimagesoftexturewithweak aspect ratio, and one or more parameters describing non- 0. butdominantorientations,orimageswithstrongvanishing linear radial and tangential distortions. Detailed examples 1 points. Finally, the method is performed on both synthetic ofthisprocesscanbefoundin[13,16],amongothers. 8 andrealdatarevealingthatitisparticularlyrobusttonoise. In this work we address the determination of the non- 0 linear distortion parameters, with the assumption that the : v otherintrinsicparameters,usuallyaddressedassumingapin- i holecameramodel,canbefoundaftertheinitialnon-linear X Keywords Radialdistortion·Cameradistortion·Plumb- distortion correction. In order to do this a model must be r lineconstraint a selected, as well as a method of estimating the model pa- rameters. EdwardRosten·RohanLoveland LosAlamosNationalLaboratory 1.2 SummaryofRelatedWork LosAlamos,NewMexico,USA E-mail:[email protected]·[email protected] 1.2.1 DistortionCorrectionModels EdwardRostem DepartmentofEngineering Ageneralequationfordistortioncorrectionisgivenby UniversityofCambridge,Cambridge,UK E-mail:[email protected] RohanLoveland I1(x(cid:48))=I0(x), x(cid:48)≡D(x), (1) DepartmentofEngineeringScience UniversityofOxford,Oxford,UK whereI1istheoutput(corrected)image,I0istheinput(dis- E-mail:[email protected] torted) image, and x is a pixel location in the input image 2 thatismappedtolocationx(cid:48) intheoutputimagebydistor- frommultiplepositionsorviewsofaparticularscene.This tioncorrectionfunctionD(x):R2⇒R2. isproblematicininstanceswhereaccessisnolongeravail- If the distortion is assumed to be isotropic, and strictly abletothecamera,butonlytotheresultingimagery. radial,thenD(x)canbewrittenas As a result, a number of methods have been developed which can operate on single views but which make use of D(x)= f(ρ)rˆ+c, (2) common structure in images such as vanishing points [3], where c is the center or radial distortion, the radius vector higher-ordercorrelationsinthefrequencydomain[11]and r=[r r ]T=x−c,theradiusρ =(cid:107)r(cid:107),thenormalizedra- straightlines[4]. 1 2 diusvectorrˆ=r/ρ and f isascalarfunctionofρ. The methods relying on the existence of straight lines, Severalmodelsfordistortioncorrectionhavebeenused the “plumb-line” methods, were pioneered by Brown [4]. previously.Intermsof f,themodelsincludethepolynomial Brown used a test-field with actual strung plumb-lines, but model[13,2],where in general these methods do not require knowledge of the locationsofthelines.Inparticular,whiteplumb-lineswere f(ρ)=ρ(1+k1ρ2+k2ρ4+k3ρ6+...), (3) strungacrossablackbackground,withtheplumb-bobsim- mersed in oil for stability. The photographic plate was ex- andtheHarrismodel[27],where posedtwicewiththecamerarotatedabouttheopticaxisby f(ρ)= ρ . (4) 90◦, giving a nominally square grid of lines. A number of (cid:112) 1+γρ2 points along the lines recorded on the photographic plate were measured using a microscope (a Mann comparator). More complex models such as [14] include additional Calibration was then performed by minimizing the least- tangentialdistortion squares error in the image between distorted straight lines D(x)=(cid:20)p1(ρ2+2r12)+2p2r1r2(cid:21)+f(ρ)rˆ+c, (5) andthemeasurespointsonthephotographedplumb-lines. 2p1r1r2+p2(ρ2+2r22) Plumb-linemethodsareapplicabletomanyimagetypes, because nearly all scenes containing man-made structures to account for decentering of the optical system (where p 1 have a large number of straight lines. Plumb-line methods and p aretheparameters).Morerecentlytherationalfunc- 2 generally rely on the process of optimizing the distortion tion model, where polynomial and perspective transforms correction parameters to make lines that are curved by ra- arecombinedintoarationalpolynomial[5,19]hasbeenpro- dial distortion straight in the corrected imagery. The lines posed. can be manually selected, as in [26], or they can be found Allofthesemodelscanhaveadequateperformancede- automatically,asin[7,25,6]bydetectingedgelsandlinking pending on the characteristics of the camera optics. In the themintolinesegments. following we limit our discussion and implementation to The objective function for optimization can be formu- a single model in order to bound the scope of the paper, lating by undistorting the line segments and measuring the thoughitshouldbenotedthatthemethodwepresentisex- straightness by fitting a straight line [26,7]. Alternatively, tensible to any model. The Harris model is chosen for its thedistortionmodelcanbechosensothatstraightlinesbe- reasonable performance, single parameter, and ease of in- come specific family of curves, such as conics [6] or cir- version(achievedbysimplynegatingγ). cles [25]. The distortion can then be found by fitting these curvestothedistortedlinesegments. 1.2.2 ParameterEstimationMethods Avarietyofmethodsexistforestimatingcameradistortion 2 AlgorithmOverview correction model parameters. Earlier efforts relied on im- agerywithartificiallycreatedstructure,eitherintheformof Weproposeamethodthatissimpleandrobusttohighlevels atest-field,populatedwithobjectshavingknown3-Dworld ofnoise,asshownintheresultssection.Inouralgorithmwe coordinates, or using square calibration grids with lines at calculate all image edgels, and then transform these into a constantintervals[13,16,2].Alternativeapproachesdonot one-dimensionalHoughspacerepresentationofangle.This requireartificiallycreatedstructure,butusedmultipleviews createsanorientationhistogramoftheedgelangles.Inthis of the same scene. The calibration technique makes use of form,curvedlineswillberepresentedatavarietyofangles, constraintsduetoknowncameramotion(forinstancerota- whilestraightlineswillbefoundonlyatone.Therefore,we tion)[23],knownscenegeometrysuchasplanarscenes[21] optimize the model distortion parameters which minimize orgeneralmotionandgeometryconstrainedwiththeepipo- the entropy (or spread) of the Hough space angular repre- larconstraint[24,1,5]. sentation.Theindividualstepsare: These approaches required access to the camera in or- dertoperformaspecificoperation,suchasacquiringviews 1. Findsalientimageedgels,withnormalvectors. 3 wesplittheimageupintoaregulargrid,andperformsub- sampling independently within each grid cell, so that each cellcontainsthesamenumberofedgels. (a) (b) (c) 2.2 Distortioncorrectionmodel Fig.1 Salientedgedetectionusingtensorvoting.(a)Theoriginalim- age,(b)thegradientmagnitude,(c)theedgesaliency. 2.2.1 Anisotropicextension Asmentionedpreviously,forthebasicradialdistortioncor- 2. Performadistortioncorrectingtransformationtotheedgels. rectionmodel,wehavebasedourdistortioncorrectionmodel 3. Computethe1-DangularHoughtransform. ontheHarrismodeldefinedinEquation4.Inordertoextend 4. Computeanobjectivefunctiondefinedasthespread(en- themodel’sflexibility,weaddananisotropiccomponent,so tropy)ofthe1-DHoughtransform. thatthemodelbecomes: 5. Optimizethetransformationparameterstominimizethe entropy/spread based objective function, iterating steps D(x)=rˆf(ρ)(1+g(θ))+c, (7) 2–4, 6. Usetheoptimizedtransformparameterstomaptheinput where f(.)andg(.)arethedistortionfunctions. imagetoacorrectedoutputimage. Inparticular,wedefinetheanisotropyfunction,g(θ)to Note that step 1, finding the edgels, is only required be: once,duetothefactthattheedgels,ratherthantheunderly- g(θ)=a sin(θ+ψ )+a sin2(θ+ψ )+... 1 1 2 2 ingimage,canbetransformed.This,andtheotherstepsof =b sinθ+b cosθ+(b sinθ+b cosθ)2+..., (8) the process, are described in further detail in the following 1 2 3 4 respectivelyenumeratedsubsections. which can be rearranged as a Fourier series. This general- purposeformulationhasnodiscontinuityastheanglewraps aroundandconvenientlyavoidstheuseoftrigonometricfunc- 2.1 Salientedgeextraction tions,sincecosθ =r /ρ,etc. 1 The structure that we are making use of in this paper con- 2.2.2 Edgeltransformation sistsoflong,straightedges,whichappearaslong,smoothly curvededgesintheinputimage. In order to evaluate the cost function it is necessary to de- Simplyperforminganedgedetectiondoesnotresultin terminetheedgels’orientation,asdiscussedintheprevious thesefeaturesbeingdominant,sotoenhancethelongedges, section.Ifitwerenecessarytoregeneratethesebycomput- weusetensorvoting[15]onthedensegradientimage.The ing a completely new image for each new set of distortion gradientisproducedbyfinitedifferences,andvotingismade model parameters, however, the optimization process (in- in proportion to the gradient magnitude. We use the stan- volvingnumerousevaluationsofdifferentsetsofmodelpa- dardkernelforsmooth,circularcurves,specificallytheker- rameters) would be prohibitively slow. Furthermore, errors nelgivenbytheequationsonpage60of [15]. duetoresamplingwouldbeintroducedwhentheimagewas For edges, each pixel is represented by a 2×2 positive undistortedateachiteration. semi-definitematrixwitheigenvaluesλ andλ .Wewishto 1 2 Fortunately,theedgelsneedtobedeterminedonlyonce, findpointswhicharesufficiently‘edgey’soweusetheedge fromtheinputimage,duetothefactthatthedistortioncor- saliencyfunctionφ,givenby: rectingtransformationscanbeapplieddirectlytotheedgels, φ =maxλ1,λ2−eminλ1,λ2. (6) providedthattheJacobiansofthetransformationsareknown. Inordertoseethis,consideranedgelintheinputimageas Thisdetectspointswheretheedgeinthemainorientationis partofaparameterisedcurvel(t)inR2.Thedistortioncor- significantly brighter than other edges. We have found that rection transformation, D, can be applied to this space to e=2producesgoodresults.Anexampleoftheseareshown createanewline: inFigure1.Thenormaloftheseedgelsisgivenbytheeigen- vectorcorrespondingtothelargesteigenvalue. m(t)=D(l(t)). (9) The final stage is to discard the non-salient edges by thresholding at φ =0. For computational efficiency of the Thelinetangentsarethenfoundbydifferentiatingtobe: laterstages,thesetofedgespassingthethresholdissubsam- (cid:34) (cid:35) (cid:34) (cid:35) pled.Typically,wekeep100,000edgels.Inordertoprevent ∂m1 ∂l1 ∂t =J ∂t , (10) theresultbeingdominatedbyoneregionwithstrongedges, ∂m2 ∂l2 ∂t ∂t 4 0.2 bemappedtoasinglepointinHoughspace.Inpracticethe mx+bformulationisunwieldy,so 0.15 bability 0.1 ρ =xcosθ+ysinθ (13) o Pr 0.05 isused,whereρ istheshortestdistancefromthelinetothe 0 Distorted lines 0 5 10 15 20 25 30 35 origin,andθ isdefinedbythevectornormaltotheline. Bin number The Hough space can be quantized into discrete bins, 0.8 andeachedgelcanbeassignedtoaparticularbin.Givena 0.6 bability0.4 sisetthoefneidngdeilcsa,tesudpbpyortthefoarctchuemeuxliasttieonnceofoaf laarpgaertnicuumlabrelrinoef o Pr 0.2 edgels in the corresponding bin. The edgels from a curve 0 endupinadjacentbins,resultinginadiffuseclusterofnon- Straight lines 0 5 10 15 20 25 30 35 Bin number zerobins,whileedgelsthatareallonthesamelineendup Fig.2 Imagesofcurvedandstraightlineimagesandthecorrespond- in exactly the same bin. This important fact motivates the ing1-DHoughtransforms. definitionofourobjectivefunction,asexplainedinthenext section. In general we anticipate the presence of a number of wheretheJacobian,J,isgivenby: parallel lines in the scene, and would like to utilize their (cid:34)∂D1 ∂D1(cid:35) reinforcement of each other. We therefore marginalize the J= ∂ll ∂l2 . (11) [ρ]×[θ]Houghspaceintoa1-Dθ spacebysummingover ∂∂Dll2 ∂∂Dl22 the ρ values for each θ. An example of some images with curvedlinesandstraightlines,andtheircorresponding1-D Theedgelsincludenormalsndefinedatdiscretepoints.The Hough transforms, are shown in Fig. 2. Note that the two transformededgelnormals,h,canthenbefoundbyrotating principal line directions are mapped to two corresponding the normals by 90◦ (making them tangents), transforming peaksinHoughspace. thetangentsbyJandrotatingthetransformedtangentsback tobenormals: 2.4 Entropy-basedobjectivefunction (cid:20) (cid:21) (cid:20) (cid:21) 0 1 0−1 h= J n (12) −10 1 0 The radial distortion correction method presented here is motivatedbytheobservationthatcurvedlinesmaptospread Note that we do not parameterise the line with a func- outpeaksinHoughspace,whilestraightlinesmaptoasin- tion.Thelineanditsnormalisknown(andused)onlyata glebin.Therefore,itisdesirabletohaveanobjectivefunc- discrete set of points, specifically where the edgels are de- tion that measures this spread. In information theory this tected.Thismeansthatl(t)andn(t)canbeevaluatedatev- quality is represented by entropy [22]. We have therefore eryvalueoft werequire.Sincetheedgeldetectionprocess normalized the 1-D Hough representation, and treat it as a alsoprovidesthenormals,Jisonlyafunctionofthedistor- probabilitydistribution.Theobjectivefunctionisthen: tionmodel,andisthereforecomputedanalyticallyfromthe B definitionofD.ThederivationofJfortheHarrismodelis C(H)≡−∑ p(H )log (p(H )), (14) b 2 b giveninAppendixA. b=1 whereHisthediscretized1-DangularHoughtransformof the edgels of an input image for a given set of model pa- 2.3 1-DAngularHoughtransform rameters, p(H ) is the value of a given normalized Hough b bin, and B is the number of bins. Minimizing C therefore TheHoughtransformisatechniqueforfindinglinesinim- minimizesthespread. ages [9]. It is sufficiently well-known so that only a trun- catedexplanationwillbegivenhere.Thebasisofthetech- niqueisthetransformofalinetoapointin“Hough”space. 2.5 Optimization By way of example, if a line is defined by y=mx+b, thenitcanberepresentedbyasinglepointina2-DHough The cost function has many local minima, so to optimize spaceof[m]×[b].Anedgel,whichcontainsbothanormal it effectively a reasonable strategy is needed. As a broad vector (and thus the slope of a line) and a discrete point overview,wehavefoundthattheMCDH(Monte-Carlodown- (which a corresponding line would pass through), can also hill)strategyworksbest.Essentially,startingparametersare 5 selectedatrandom,andthedownhillsimplexalgorithm[17] x 10−5 Uncorrelated noise 4 (specificiallythevariationgivenin[18])isusedtooptimize Isotropic Anisotropic the cost from the selected starting points. The best result 3 isthenselected.Thedownhillsimplexalgorithmisiterated until the residual drops below a threshold (10−15), or 1000 g2 iterations occur, whichever is sooner. The residual is com- 1 putedas: 0 70% Random noise 0 0.2 0.4 0.6 0.8 1 (cid:107)s −s (cid:107) Proportion of noise edgels r= best worst 2, (cid:107)sbest(cid:107)2 4x 10−5 Correlated noise Isotropic Anisotropic wheresbest isthelocationofthebest(smallest)pointonthe 3 simplex,ands isthelocationoftheworst(largestpoint) worst g2 onthesimplex. In order to implement this method effectively, several 1 techniques are needed. Parameters computed in the Hough 0 transformwillnotlieexactlyatthebincentres.Iftheparam- 70% Correlated noise 0 0.2 0.4 0.6 0.8 1 Proportion of noise edgels eterissimplyplacedintheclosestbin,thenthequantization Fig.3 (Left)Illustrationofthesimulateddata(shownwith100points causedbythiscausesflatareastoexistinthecostfunction. perline).(Right)Performanceofthealgorithmonthesimulateddata, Theflatareascaneasilyconfoundtheoptimizer,soinstead, withγ=10−5andγ=2×10−5.Themedianvalueofgammaisshown theneighbouringbinsareincrementedusinglinearinterpo- witherrorbarsatthe10thand90thpercentile. lation. Theoptimizerismosteffectivewhentheparametersbe- 1. Foreachpoint,x(cid:48),inagriddefinedontheoutputimage ingoptimizedhavesimilarordersofmagnitude,sinceother- I ,findthecorrespondingpointinthedistortedinputim- 1 wiseroundofferrorwillcauseerrorsinthecomputationof ageI givenbyD−1(x(cid:48)). 0 newsimplexes.Inthiscase,asimplescalebasedonapriori 2. Copythepixelback,performingtheassignment: knowledgeofapproximateparametervaluessuffices. For radial distortion, c is roughly in the middle of an I1(x(cid:48)):=I0(D−1(x(cid:48))). image and is of the order 102 to 104 pixels. Given Equa- Sinceimagesarediscrete,interpolationwillberequired tion4,itisreasonabletoexpectγ tobeapproximatelyinthe to find I (D−1(x(cid:48))). Bicubic interpolation has been used to range±ρ−2,whereρ ≈|c˜|andc˜isthecentreoftheim- 1 max max generatetheresultsshowninthefollowingsection. age. Therefore, in the optimization, we solve for β, where β =100γρ2 ,whichbringsβ intothesamerangeasc. max Similarly,wehavefoundthatthevaluesoftheanisotropic 3 Results coefficients, b ,... are of order 10−3, so we instead solve 1 for d, where d =105b. The resulting optimization is per- i i i 3.1 Synthetictests formedoverthevector: Inordertocomputethesensitivitytovariouskindsofnoise, [c ,c ,β,d ,d ,d ,d ,d ,d ]. (15) 1 2 1 2 3 4 5 6 wecreateanumberofsyntheticimages,usingknownradial Therandomselectionofthestartingparametersmustbe distortionlevels,andcomputetheresultingradialdistortion basedaroundsomeknowledgeofthevalues.Thecentreof correction parameters using our technique. We investigate radialdistortionisusuallyneartothecentreoftheimage,so the two correction models, namely the strictly radial cor- we draw the initial centres from a normal distribution cen- rectionoftheunmodifiedHarrismodel,andtheanisotropic tredatc˜ withastandarddeviationof |c˜|.Giventheapproxi- extensiondiscussedpreviously.Theimagesaredesignedto 20 matevaluesofγ,andthereforeβ,wedrawinitialvaluesof testtheperformanceofthealgorithminthepresenceofmea- β fromN (0,100).Theinitialanisotropyparametersareset surementerrorintheplumb-lines,andbothuncorrelatedand to zero. For our application and these parameters, we have correlatednon-plumb-linedata. foundthat120MCDHiterationsissufficient. The 250×250 pixel test images consist of five good qualitylines(nopointcanbewithin60pixelsofthecentre of the image), consisting of 10 points on each line, drawn 2.6 Generatingtheoutputimage with barrel distortion and with random orientation errors. Then (in the case of uncorrelated noise), a number of ran- Inordertogeneratetheoutput(corrected)imagethefollow- domly placed, randomly oriented points are added. In the ingprocedureisneeded: caseofcorrelatednoise,anumberofrandomlyplaced,sized 6 andorientedellipses(withthesameapproximatepointspac- thatthisassumesthatthecentreofradialdistortionisatthe ingasthelines)areadded.Ouralgorithmisthenappliedto opticaxisofthecamera,whichisareasonableassumption. thetestimagetoestimatetheparameters. In order to measure the quality of the camera calibra- For every selected noise proportion for the simulation, tion,welocaliseaknown3Dmodelinanimage,andmea- 200testimagesarecreatedforeachoftwodifferentvalues suretherootmeansquare(RMS)errorbetweenthecontrol ofγ.Theresultsofthese,andanillustrationofthesimulated points on the model and the measured points in the image. dataisshowninFigure3.Ascanbeseen,thetechniqueis Themodelconsistsof13by9blackandwhitesquaresina veryrobusttonoise,producinggoodresultswithupto70% chequerboard pattern on a flat plane. The model is warped contamination and interestingly it does not perform much using a homography (the parameters of which must be de- worseinthecaseofcorrelatednoise.Furthermore,although termined), then by the calibrated radial distortion function the anisotropic extension (in this case) introduces six extra andrenderedintotheimage.Wethensearchnormaltothe parameterstotheoptimization,thishasnosignificanteffect rendered edges, looking for edges in the image. We define onthestabilityofthetechniqueinhighnoisesituations. theerrortobethedistanceoffsetinpixelsbetweentheren- deredmodeledgeandthemeasurededgepositionintheim- age The parameters of the homography are then adjusted 3.2 Exampleimages usingthedownhill-simplexalgorithmtominimizetheRMS error. In particular, we search 15 pixels in either direction, TheresultsontworealimagesareshowninFigure4.Inthe and take the point with the highest gradient, measured us- correctedimages,real-worldstraightlineshavebeenanno- ingthekernel[−1 −2 −10121].Ifthehighestgradient tated with lines to show that there is no significant amount does not exceed some threshold, or is not a local maxima, ofcurvature.Theupperimageshowsthetechniqueoperat- thentheedgesearchisdiscardedanddoesnotcontributeto ingonanimagewherethelinesbelongtovanishingpoints the RMS error. Quadratic interpolation is then used to find (note that some distortion was artificially added to this im- theedgepositiontosubpixelaccuracy.Thesearchdistance age in addition to the camera distortion present). Note the is sufficiently small that data association is trivial, and ro- presenceofstrongcurvededgesalongtheboundariesofthe bustfittingisnotrequired.Amoredetailedtreatmentofvery carsandpartsofthebuilding. closelyrelatedsystemsforaligningmodelsisgivenin[12, The lower image shows the results on an aerial image 8]. ofacity.Althoughtherearetwoprincipaldirectionsinthis The results of this test are shown in Figure 5. As ex- image,thecontrastontheprincipaledgesislowcompared pected,thetechniquewhichusesmany(inthiscaseapproxi- to many of the other features. Additionally, the anisotropy mately100)imagesofastructuredsceneperformsbest.The extensionwasrequiredtocorrecttheverystrongdistortion performance of our method varies somewhat with the con- inthelowerleftcorner. tentsofthescene,butperformswelloncertainimages.One interestingpropertyofourtechniqueiswellillustrated.The propertyisthatedgelsfrommultiple,unrelatedimagescan 3.3 Comparisontoothertechniques be aggregated to provide more straight edges. In the case shown, the resulting calibration is superior to the calibra- Togaugetheaccuracyofourmethod,wehavecomparedit tiongeneratedfromasingleimageofacarefullyconstructed to a technique based on structured scenes. In particular we grid. haveusedthetechniqueof[10],whichusesmultipleimages of a planar grid of squares to determine the intrinsic and extrinsiccameracalibrationparameters.Thissystemisable 4 Discussionandconclusions tocalibratecubic,quintic,HarrisandHarriswithunitaspect ratiocameramodels.Weusethelastlistedmodel,sincethis In this paper, we have presented a new, simple and robust matchesthecameramodelinthepaper.Inparticular,weuse methodfordeterminingtheradialdistortionofanimageus- thisprogramtooptimizethemodel: ingtheplumb-lineconstraint.Thetechniqueworksbyfirst (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21)(cid:20) (cid:21) x u f 0 x 1 extractingsalientedgelsandthenminimizingthespreadof i = + c , (16) yi v 0 f yc (cid:112)1+α(x2+y2) a 1D angular Hough transform of these edgels. The tech- c c niqueissimpleandbecausenoedgefittingisperformed,the where (u,v) is the optic axis, (xi,yi) is a coordinate in the technique is very robust to the presence of noise. Further- image,and(xc,yc)isacoordinateinideal,normalizedcam- more,thetechniqueismoregenerallyapplicablethanother era’simageplane.Sincethetechniqueisastructuredscene plumb-line techniques in that the lines used do not need to technique, it also estimates the focal length of the camera, be continuous. The technique works on textures with prin- f.Totranslatefromonemodeltotheother,setγ= α .Note cipal directions, as illustrated by the aerial image of a city, f2 7 Fig.4 (Left)Original,distortedimages.(Right)Imagesundistortedusingourtechnique.Somelineswhicharestraightintheworldhavebeen annotatedwithstraightlinesintheundistortedimage.Theimagesareofabuilding,showingstrongvanishingpointsandanaerialimageofacity. wherethesalientedgedetectionresultsinalargenumberof References relativelysmalledgefragments. 1. Barreto,J.P.,Daniilidis,K.:Fundamentalmatrixforcameraswith radialdistortion.In:10thIEEEInternationalConferenceonCom- Theproposedalgorithmhasanumberofparameters:the puterVision,vol.1,pp.625–632.Springer,Beijing,China(2005) parameters of the tensor voting kernel, the number of bins 2. Beyer,H.:Accuratecalibrationofccd-cameras. IEEEComputer and the parameters of the optimization. In practice, the se- SocietyConferenceonComputerVisionandPatternRecognition lection of these parameters are not critical, and indeed the pp.96–101(1992) samesetofparameterswasusedforthesimulateddata,the 3. Bra¨uer-Burchardt,C.,Voss,K.:Automaticcorrectionofweakra- diallensdistortioninsingleviewsofurbanscenesusingvanish- exampleimagesandthetestimagesshown. ingpoints. In:9thInternationalConferenceonImageProcessing, vol.3,pp.865–868.IEEEComputerSociety(2002) Our method is flexible in that it does not impose con- 4. Brown,D.C.:Close-rangecameracalibration. Photogrammetric Engineering37,855–866(1971) straintsbeyondthepresenceofoneormorestraightedges: 5. Claus, D., Fitzgibbon, A.: A rational function lens distortion itisnotarequirementthattheedgessharevanishingpoints, modelforgeneralcameras. IEEEComputerSocietyConference or structure of any particular kind. It is not even a require- onComputerVisionandPatternRecognition1,213–219(2005) ment that the edgels belong to a related set of images. The 6. Claus,D.,Fitzgibbon,A.W.:Aplumblineconstraintfortheratio- technique can be equally applied to edgels from multiple nalfunctionlensdistortionmodel. In:ProceedingsoftheBritish MachineVisionConference,pp.99–108(2005) imagesofunrelatedscenestakenwiththesamecamerapa- 7. Devernay,F.,Faugeras,O.:Straightlineshavetobestraight. Ma- rameters. Finally, our method is widely applicable because chineVisionandApplications13(1)(2001) it is, in terms of RMS error, able to produce a calibration 8. Drummond,T.,Cipolla,R.:Real-timevisualtrackingofcomplex to within three percentage points of a technique requiring structures. IEEETransactionsonPatternAnalysisandMachine accesstothecameraandstructuredscenes. Intelligence24(7),932–946(2002) 8 Testimages: 1 2 3 4 5 6 Calibrationresults: Calibration c1 c2 γ×107 RMSerror Uncalibrated 1024 768.0 0.000 >40‡ libCVDcameracalibration 1030 687.0 3.780 1.67 Testimage1 1075 708.6 3.700 2.38 Testimage2 1325 769.0 3.408 12.2† Testimage3 1149 627.3 4.317 4.75 Testimage4 1012 739.1 2.814 6.08 Testimage5 1084 611.4 3.544 3.60 Testimage6 1226 968.0 3.405 12.8† Testimages6and2 1047 725.6 4.075 2.21 Fig.5 Calibrationresultsforanalternativemethodandsometestimages,includingacalibrationgridandsomeimagesofurbanscenes.Allimages are2048×1536pixels.‡Intheuncalibratedcase,theerrorsaresufficientlythatthesearchradiushadtobeincreasedto100pixels.Thisresults intheRMSerrorbeinganunderestimate,sinceforlargeerrors,thesystemsometimesfindsacloseredge(sothemeasurederroristoosmall),or failstofindtheedgeatall(solargeerrorsarenotincluded).†Insomecases,theerrorscausedalargenumberofthecorrespondencestobemissed withasearchradiusof15pixels,soitwasincreasedto36pixels.Forthelastrowofthetable,theedgelsfromthetwoimageswereaggregated andtreatedasasingleimage.Inourmodel,c=[c c ]andforthelibCVDmodel,u=c andv=c . 1 2 1 2 9. Duda,R.O.,Hart,P.E.:Useofthehoughtransformationtodetect 16. Lenz,R.,Tsai,R.:Techniquesforcalibrationofthescalefactor linesandcurvesinpictures. CommunicationsoftheACM15(1), andimagecenterforhighaccuracy3-dmachinevisionmetrology. 11–15(1972) IEEETransactionsonPatternAnalysisandMachineIntelligence 10. Ethan Eade, et. al.: Camera calibration in [20]: progs/calib.cxx 10(5),713–720 (2008,CVStagSNAPSHOT 20080904) 17. Nelder,J.,Mead,R.:ComputerJournal7,308–313(1965) 18. Press,W.H.,Teukolsky,S.A.,Vetterling,W.H.,Flannery,B.P.:Nu- 11. Faird,H.,Popescu,A.C.:Blindremovaloflensdistortion.Journal mericalRecipesinC. CambridgeUniversityPress(1999) oftheOpticalSocietyofAmericaA18(9),2072–2078(2001) 19. Rosten,E.,Cox,S.:Accurateextractionofreciprocalspaceinfor- 12. Harris,C.,Stennett,C.:RAPID,avideorateobjecttracker.In:1st mation from transmission electron microscopy images. In: Ad- BritishMachineVisionConference,pp.73–77.BritishMachine vances in Visual Computing. LNCS 4292, vol. 1, pp. 373–382 VisionAssosciation,Oxford(1990) (2006) 13. Heikkila,J.:Geometriccameracalibrationusingcircularcontrol 20. Rosten, E., Drummond, T., Eade, E., Reitmayr, points.IEEETransactionsonPatternAnalysisandMachineIntel- G., Smith, P., Kemp, C., Klein Georg, et. al.: ligence22(10),1066–1077(2000) libCVD: Cambridge vision dynamics library (2008). 14. Heikkila¨,J.,Silve´n,O.:Afour-stepcameracalibrationprocedure http://savannah.nongnu.org/projects/libcvd withimplicitimagecorrection.In:11thIEEEConferenceonCom- 21. Sawhney,H.S.,Kumar,R.:Truemulti-imagealignmentanditsap- puter Vision and Pattern Recognition, pp. 1106–1112. Springer, plicationtomosaicingandlensdistortioncorrection.IEEETrans- SanJuan,PuertoRico(1997) actionsonPatternAnalysisandMachineIntelligence21(3),235– 15. Lee,M.,Medioni,G.:Grouping·,–,→,(cid:13)−,intoregions,curves 243(1999) andjunctions. InternationalJournalofComputerVisionandIm- 22. Shannon,C.M.:Amathematicaltheoryofcommunication. Bell ageUnderstanding76(1),54–69(1999) SystemTechnicalJournal27,379–423and623–656(1948) 9 23. Stein,G.:Accurateinternalcameracalibrationusingrotation,with analysisofsourcesoferror.In:5thIEEEInternationalConference onComputerVision,p.230.Springer,BostonMA,USA(1995) 24. Stein,G.:Lensdistortioncalibrationusingpointcorrespondences. In:10thIEEEConferenceonComputerVisionandPatternRecog- nition,p.602.Springer,SanFransisco,California,USA(1996) 25. Strand,R.,Hayman,E.:Correctingradialdistortionbycirclefit- ting.In:16thBritishMachineVisionConference.BritishMachine VisionAssosciation,Oxford(2005) 26. Swaminathan,R.,Nayar,S.:Nonmetriccalibrationofwide-angle lensesandpolycameras. IEEETransactionsonPatternAnalysis andMachineIntelligence22(10),1172–1178(2000) 27. Tordoff,B.,Murray,D.W.:Theimpactofradialdistortiononthe self-calibrationofrotatingcameras. ComputerVisionandImage Understanding96(1),17–34(2004) A DerivationofJfortheHarrismodel (cid:20) (cid:21) rˆ Takingrˆtobeacolumnvector(i.e.rˆ= 1 ): rˆ 2 ∂D ∂rˆ ∂f(ρ)∂ρ J= = f(ρ)(1+g(θ))+rˆ(1+g(θ)) ∂x ∂x ∂ρ ∂x ∂g(θ(x)) +rˆf(ρ) (17) ∂x Where: ∂rˆ (cid:34)∂rˆ1 ∂rˆ1(cid:35) 1(cid:20) rˆ2 −rˆ rˆ (cid:21) = ∂x1 ∂x2 = 2 1 2 , (18) ∂x ∂∂xrˆ21 ∂∂xrˆ22 ρ −rˆ1rˆ2 rˆ12 ∂f(ρ) =(1+γρ2)−32, (19) ∂ρ ∂∂ρx =(cid:104)∂∂xρ1 ∂∂xρ2(cid:105)=(cid:2)rˆ1 rˆ2(cid:3), (20) and: ∂g (cid:104) (cid:105) = ∂g ∂ρ (21) ∂x ∂x1 ∂x2 Thefunctiong(θ)isafunctionofsinθ andcosθ,where: cosθ=r1/ρ=rˆ1,and (22) sinθ=r2/ρ=rˆ2, (23) wecanrewriteg(θ(x))as: g(rˆ)=b rˆ +b rˆ +(b rˆ +b rˆ )2+(b rˆ +b rˆ )3, (24) 1 2 2 1 3 2 4 1 5 2 6 1 so, ∂g ∂g(rˆ)∂rˆ (cid:104) (cid:105)∂rˆ = = ∂g(rˆ) ∂g(rˆ) (25) ∂x ∂rˆ ∂x ∂rˆ1 ∂rˆ2 ∂x where: ∂g(rˆ) =b +2b (b rˆ +b rˆ )+3b (b rˆ +b rˆ )2 (26) ∂rˆ1 1 3 3 1 4 2 5 5 1 6 2 ∂g(rˆ) =b +2b (b rˆ +b rˆ )+3b (b rˆ +b rˆ )2. (27) ∂rˆ2 2 4 3 1 4 2 6 5 1 6 2 SubstitutingEquations18,19,20,25,26and27intoEquation17gives theanalyticsolutionfortheJ.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.