Astronomy&Astrophysicsmanuscriptno. CALIFA_DR1 (cid:13)cESO2012 November1,2012 CALIFA, the Calar Alto Legacy Integral Field Area survey: II. First public data release(cid:63) B.Husemann1,K.Jahnke2,S.F.Sánchez3,4,D.Barrado-Navascues4,S.Bekeraite˙1,D.J.Bomans5,6, A.Castillo-Morales7,C.Catalán-Torrecilla7,R.CidFernandes8,J.Falcón-Barroso9,10,R.García-Benito3, R.M.GonzálezDelgado3,J.Iglesias-Páramo3,4,B.D.Johnson11,D.Kupko1,R.López-Fernandez3,M.Lyubenova2, R.A.Marino12,D.Mast4,A.Miskolczi5,A.Monreal-Ibero3,A.GildePaz7,E.Pérez3,I.Pérez13,14, F.F.Rosales-Ortega16,T.Ruiz-Lara13,U.Schilling5,G.vandeVen2,J.Walcher1,J.Alves15,A.L.deAmorim8, N.Backsmann1,J.K.Barrera-Ballesteros9,J.Bland-Hawthorn17,R.-J.Dettmar5,6,M.Demleitner18,A.I.Díaz16, H.Enke1,E.Florido13,14,H.Flores19,L.Galbany20,A.Gallazzi21,B.García-Lorenzo9,10,J.M.Gomes22,N.Gruel23, 2 1 T.Haines24,L.Holmes25,B.Jungwiert26,V.Kalinova2,C.Kehrig3,R.C.KennicuttJr27,J.Klar1,M.D.Lehnert19, 0 Á.R.López-Sánchez28,29,A.deLorenzo-Cáceres10,E.Mármol-Queraltó9,10,I.Márquez3,J.Mendez-Abreu9,10, 2 M.Mollá12,A.delOlmo3,S.E.Meidt2,P.Papaderos22,J.Puschnig15,A.Quirrenbach30,M.M.Roth1, t P.Sánchez-Blázquez16,K.Spekkens25,R.Singh2,V.Stanishev20,S.C.Trager31,J.M.Vilchez3,V.Wild32, c O L.Wisotzki1,S.Zibetti33,andB.Ziegler15 0 3 (Affiliationscanbefoundafterthereferences) November1,2012 ] O C ABSTRACT . h Wepresentthefirstpublicdatarelease(DR1)oftheCalarAltoLegacyIntegralFieldArea(CALIFA)survey. Itconsistsofscience- p grade optical datacubes for the first 100 of eventually 600 nearby (0.005 < z < 0.03) galaxies, obtained with the integral-field - spectrographPMAS/PPakmountedonthe3.5mtelescopeattheCalarAltoobservatory. ThegalaxiesinDR1alreadycoverawide o rangeofpropertiesincolor-magnitudespace,morphologicaltype,stellarmass,andgasionizationconditions.Thisoffersthepotential r t totackleavarietyofopenquestionsingalaxyevolutionusingspatiallyresolvedspectroscopy.Twodifferentspectralsetupsareavail- s ableforeachgalaxy,(i)alow-resolutionV500setupcoveringthenominalwavelengthrange3745–7500Åwithaspectralresolution a [ of6.0Å(FWHM),and(ii)amedium-resolutionV1200setupcoveringthenominalwavelengthrange3650–4840Åwithaspectral resolutionof2.3Å(FWHM).WepresentthecharacteristicsanddatastructureoftheCALIFAdatasetsthatshouldbetakenintoac- 1 countforscientificexploitationofthedata,inparticulartheeffectsofvignetting,badpixelsandspatiallycorrelatednoise. Thedata v qualitytestforall100galaxiesshowedthatwereachamedianlimitingcontinuumsensitivityof1.0×10−18ergs−1cm−2Å−1arcsec−2 0 at5635Åand2.2×10−18ergs−1cm−2Å−1arcsec−2at4500ÅfortheV500andV1200setuprespectively,whichcorrespondstolimiting 5 randgbandsurfacebrightnessesof23.6magarcsec−2and23.4magarcsec−2,oranunresolvedemission-linefluxdetectionlimitof 1 roughly1×10−17ergs−1cm−2arcsec−2and0.6×10−17ergs−1cm−2arcsec−2,respectively. Themedianspatialresolutionis3(cid:48).(cid:48)7,and 8 theabsolutespectrophotometriccalibrationisbetterthan15%(1σ). Wealsodescribetheavailableinterfacesandtoolsthatallow . 0 easyaccesstothisfirstpublicCALIFAdataathttp://califa.caha.es/DR1. 1 Keywords. techniques:spectroscopic-galaxies:general-surveys 2 1 : v 1. Introduction bundle (Kelz et al. 2006; Verheijen et al. 2004). A diameter- i X selected sample of 939 galaxies were drawn from the 7th data The Calar Alto Legacy Integral Field Area (CALIFA) survey releaseoftheSloanDigitalSkySurvey(SDSS,Abazajianetal. r a(Sánchezetal.2012a,hereafterS12)isanongoinglargeproject 2009)whichwillbedescribedinWalcheretal. (inpreparation), of the Centro Astronómico Hispano-Alemán at the Calar Alto hereafterW12. Fromthismothersamplethe600targetgalaxies observatory to obtain spatially resolved spectra for 600 lo- arerandomlyselected. cal (0.005<z<0.03) galaxies by means of integral field spec- Combining the techniques of imaging and spectroscopy troscopy(IFS).CALIFAobservationsstartedinJune2010with throughopticalIFSprovidesamorecomprehensiveviewofin- the Potsdam Multi Aperture Spectrograph (PMAS, Roth et al. 2005),mountedtothe3.5mtelescope,utilizingthelarge(74(cid:48)(cid:48)× dividualgalaxypropertiesthananytraditionalsurvey. CALIFA- 64(cid:48)(cid:48)) hexagonal field-of-view (FoV) offered by the PPak fiber like observations were collected during the feasibility studies (Mármol-Queraltóetal.2011;Viironenetal.2012)andthePPak (cid:63) Based on observations collected at the Centro Astronómico His- IFSNearbyGalaxySurvey(PINGS,Rosales-Ortegaetal.2010), pano Alemán (CAHA) at Calar Alto, operated jointly by the Max- apredecessorofthissurvey. Firstresultsbasedonthosedatasets Planck-InstitutfürAstronomie(MPIA)andtheInstitutodeAstrofísica alreadyexploredtheirinformationcontent(e.g.Alonso-Herrero deAndalucía(CSIC) et al. 2012; Rosales-Ortega et al. 2011, 2012; Sánchez et al. Articlenumber,page1of27 E Sb 80 e] 4 S0 Sc re 60 Sa Sd g e d 3 [ 40 n o 20 i 2 t a n i 0 l ec ur 1 D 20 o l o c z 00 00 00 00 72 s200 u 4 64e [%] et 13 23 04 01 01 56mpl targ 150 3 01 11 20 06 02 00 4408nal sa er of 100 2 00 01 06 02 01 00 32n of fi b 24o um 50 00 01 03 03 00 00 16racti N 1 F 8 00 50 100 150 200 250 300 350 24 23 22 21 20 19 18 17 16 0 Right Ascension [degree] absolute Magnitude (Mz) Fig.1. DistributionofgalaxiesintheCALIFAmothersampleonthe Fig.2. Upperpanel:DistributionofCALIFAgalaxiesintheu−zvs. sky (upper panel) and as a function of right ascension (lower panel). M color-magnitudediagram.BlackdotsindicategalaxiesintheCAL- z GalaxiesintheCALIFADR1samplearehighlightedbyfilledsymbols IFAmothersample(S12,W12)andcoloredsymbolsdenoteCALIFA withredcolor. Thenumberdistributioninbinsof30◦ alongtheright DR1galaxies. Differentcolorsrepresentthemorphologicalclassifica- ascensionisshowninthelowerpanelforthemothersample(grayarea) tionofgalaxieswhichrangefromellipticals(E)tolate-typespirals(Sd). andtheDR1sample(redshadedarea). Lowerpanel: ThefractionofgalaxiesintheDR1samplewithrespect to the expected final CALIFA sample distribution in bins of 1mag in M and0.75maginu−z. Thetotalnumberofgalaxiesperbininthe z 2011,2012b).CALIFAcanthereforebeexpectedtomakeasub- DR1sampleiswrittenineachbin. Thebinsforwhichthenumberof stantialcontributiontoourunderstandingofgalaxyevolutionin galaxiesinthemothersampleislessthan5arepronetolow-number variousaspectsincluding,(i)therelativeimportanceandconse- statisticsandenclosedbyamagentasquareforclarity. quences of merging and secular processes, (ii) the evolution of galaxiesacrossthecolor-magnitudediagram, (iii)theeffectsof theenvironmentongalaxies,(iv)theAGN-hostgalaxyconnec- formationwastakenfromSIMBADforallgalaxieswhereSDSS tion, (v) the internal dynamical processes in galaxies, and (vi) DR7spectrawereunavailable. ThereaderisreferredtoW12for the global and spatially resolved star formation history of vari- adetailedcharacterizationoftheCALIFAmothersampleanda ousgalaxytypes. thoroughevaluationoftheselectioneffectsimpliedbythecho- In this article, we introduce the first data release (DR1) of sen selection criteria. From the CALIFA mother sample, 600 CALIFAwhichgrantspublicaccesstohigh-qualitydataforaset galaxies are randomly selected for observation purely based on of100galaxies. ThepropertiesofthegalaxiesintheDR1sam- visibility,andwerefertothesegalaxiesasthevirtualfinalCAL- plearesummarizedinSect.2. Wedescribethedatacharacteris- IFAsamplehereafter. tics(Sect.3), datastructure(Sect.4), anddataquality(Sect.5) The first 100 public DR1 galaxies were observed in both ofthedistributedCALIFAdataasessentialinformationforany spectral setups from the start of observations in June 2010 un- scientificanalysis. Severalinterfacesareavailabletoaccessthe til June 2012. We list these galaxies in Table 1 together with CALIFADR1data,whichareintroducedinSect.6. theirprimarycharacteristics. Thedistributionofgalaxiesinthe sky follows the underlying SDSS footprint (Fig. 1). An excep- tionistheadditionalcutinδ>7◦ thatwasappliedtotheregion 2. TheCALIFADR1sample oftheNorthernGalacticCap,giventhesufficientlylargenumber A sample of 939 potential CALIFA galaxies, also known as ofobjectswithbettervisibilityfromCalarAlto. Thenumberof the “CALIFA mother sample”, was drawn from the photomet- galaxiesinDR1isnothomogeneousasafunctionofrightascen- riccatalogSDSSDR7asoutlinedinS12andW12. Theprimary sion,α(J2000),andhasaclearpeakaroundα ∼ 255◦. Thiscan CALIFA selection criterion was the angular isophotal diameter beexplainedbytheunexpecteddowntimeofthe3.5mtelescope (45(cid:48)(cid:48) < D <80(cid:48)(cid:48))ofthegalaxies,whichwascomplementedby fromAugust2010untilApril2011duetooperationalreasonsat 25 limitingredshifts,0.005 < z < 0.03. Theseredshiftlimitswere theobservatory,whichdelayedthesurveyroughlyby8months. imposedtoensurethatallinterestingspectralfeaturescanbeob- CALIFAobservations,therefore,sofarspanthreesummersea- servedwithafixedspectralsetupoftheinstrumentandthatthe sons at Calar Alto, but only a single winter season. Neverthe- samplewouldnotbedominatedbydwarfgalaxies. Redshiftin- less,thedistributionofphysicalpropertiesisnearlyrandom,as Articlenumber,page2of27 Husemannetal.:TheCALIFAsurveyII.Firstpublicdatarelease 1 ] 1 %]30 mag 2 e [ 3 pl25 c 3 m Mp sa20 ty [ 4 nal si fi 15 n f e o d 5 r on 10 e i b ct m 6 a u r 5 n F 14 08 28 17 27 06 7 17 18 19 20 21 22 23 0 E S0 SA SAB SB M absolute r band magnitude Galaxy type Fig.3. Luminosityfunctionsinther bandoftheDR1sample(red Fig.4. ThefractionofgalaxiesintheDR1samplewithrespecttothe points),theCALIFAmothersample(bluepoints),andthelow-redshift expectedfinalCALIFAsampledistribution,splitbyvisuallyclassified sampleoftheNYUvalueaddedcatalog(blackline,Blantonetal.2005). morphology.Wedividethegalaxiesintoellipticals(E),lenticulars(S0), Despite the small size of the DR1 sample the luminosity function is non-barredspirals(SA),weaklybarredspirals(SAB),stronglybarred reproducedwell. spirals(SB),andongoingmergers(M)ofanytype.Themorphological distributionoftheDR1sampleliesclosetothatofthemothersample. ThetotalnumberofgalaxiesintheDR1foreachmorphologytypeis writtenonthebar. ErrorbarsarecomputedfromthePoissonerrorsof expected,andcoversgalaxieswithawiderangeofpropertiesas theassociatedDR1numbercounts. discussedbelow. Thedistributionofgalaxiesinthecolor-magnitudediagram (Fig. 2) shows that the DR1 sample covers almost homoge- late-type galaxies neouslythefullrangeoftheCALIFAmothersample. Onaver- %]35 early-type galaxies age, the DR1 targets comprises ∼20% per color-magnitude bin [ e30 ofthetotalexpectednumberwhenCALIFAiscompleted. How- l p ever, there is currently still a deficit of low luminosity galaxies m a25 with intermediate colors. In other color-magnitude bins, espe- s cieias,llyfluwcittuhaitniothnossceawnhbeereexthpelaminoetdhebrysatmhepleeffceocnttoaifnlsofwewnugmalbaxer- nal20 i f statistics. Figure 2 highlights the need to further increase the of 15 numbers to the full CALIFA sample to obtain enough galaxies n in each bin for a meaningful multi-dimensional statistical anal- o i 10 t ysis. In Fig. 3, we show the r band luminosity function (LF) c a of the DR1 sample as compared to the mother sample and the Fr 5 reference SDSS sample of Blanton et al. (2005). All technical details on how we obtained the LFs are described in W12. We 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 simplynoteherethatdespitethesmallsamplesizeofDR1,we b/a axis ratios of galaxies already reproduce the LF reasonably well. The turnover of the LFatMr >−19.5isentirelyexpectedandunderstood. Fig. 5. The fraction of galaxies in the DR1 sample with respect to Galaxymorphologieswereinferredbycombiningtheinde- the expected final CALIFA sample distribution, as a function of axis pendent visual classifications of several collaboration members ratio (b/a). Galaxies were separated into early-type galaxies (E+S0) as described in W12. In Fig. 4 we show the fraction of DR1 andlate-typegalaxies(Saandlater).TheCALIFAmothersampledoes notincludeanyellipticalgalaxieswithb/a<0.3oranyspiralgalaxies galaxieswithrespecttotheexpectedfinalsampledistributionfor differentmorphologicaltypesgroupedintoelliptical,lenticular, withb/a>0.9.ErrorbarsarecomputedfromthePoissonerrorsofthe associatedDR1numbercounts. spiralgalaxies(separatedbydifferentbarstrength)aswellason- going galaxy mergers. A more detailed classification of spirals intoearly-andlate-typesisavailable,butwedonotdistinguish aKolmogorov-Smirnovtest,wefurtherquantifiedthatthemor- betweenthemherebecauseofthestillmodestnumberofgalax- phologyandtheaxis-ratiodistributionofDR1isconsistentwith ieswithinDR1. TheDR1coverageseemstobeconsistentwith being randomly drawn from the CALIFA mother sample with a random selection because the fraction of DR1 galaxies with >95%confidence. respect to the expected final sample is almost constant for all In Fig. 6, we present the distribution of stellar masses for types. Axis ratios (b/a) were measured from the SDSS r band the DR1 galaxies. They were directly inferred from the CAL- imagebycalculatinglightmomentsafterproperskysubtraction IFA data by applying spatially resolved spectral synthesis us- andmaskingofforegroundstars(seeW12fordetails). Thefrac- ingtheStarlightcode(CidFernandesetal.2005)withacom- tions of axis ratios, which can be used as an indication of the bination of single stellar populations (SSPs) from the libraries inclinationofspiralgalaxies,coveredbytheDR1sampleisho- of González Delgado et al. (2005) and Vazdekis et al. (2010), mogeneous with respect to the final sample (Fig. 5). Based on which both adopt a Salpeter initial mass function. Details of Articlenumber,page3of27 1.5 Kewley et al. (2001) Kauffmann et al. (2003) Seyfert (7) 20 Cid Fernandes et al. (2010) s ) 1.0 e i H x a 7/ al 0 0.5 g 15 50 1 R ] D II 0.0 I r of 10 ([O LINER (34) be og 0.5 m l Inter. (14) SF (28) u N 5 1.0 1.0 0.5 0.0 0.5 log([N II] 6583/H ) 0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 log(M /M ) Fig.7. Emission-linediagnosticdiagramforthemostcentralspaxelof * eachDR1datacube. Onlyobjectsforwhichallrequiredemissionlines Fig.6. DistributionofstellarmassesforgalaxiesintheDR1sample. haveS/N>3areshown.ThedemarcationlinesofKewleyetal.(2001), The stellar masses have been determined from the CALIFA data (see Kauffmann et al. (2003), and Cid Fernandes et al. (2010) are used to textfordetails). classifythegalaxiesintostarforming(SF),intermediate,Seyfert,and LINER-typegalaxies,whicharedenotedwithblack,magenta,red,and greensymbols,respectively. thesemeasurementswillbepresentedinGonzálezDelgadoetal. 3. Dataprocessinganderrorpropagation (inpreparation). TheDR1galaxiescoverintermediatetohigh- The instrument characteristics and observing strategy of the mass galaxies, including more than 5 galaxies per 0.25dex bin CALIFA survey define the requirements for the data reduction between1010 and1012M andamedianvaluecloseto1011M . (cid:12) (cid:12) scheme. These requirements are thoroughly described in S12 Theasymmetricdistributionisexpectedfromthedistributionin and only briefly summarized here for completeness. The PPak absolutemagnitudes(seeFig.2)andisinheritedfromtheCAL- fiberbundleofthePMASinstrumentcomprises382fibers,each IFAmothersampleduetoitsselectioncriteria(seeW12forde- withadiameterof2.7(cid:48)(cid:48) projectedonthesky. TheprimaryFoV tails). hasahexagonalshapeof74(cid:48)(cid:48)×62(cid:48)(cid:48)insize,sampledby331fibers withafillingfactorof∼60%. Asetof36fibersarededicatedto Many different kinds of galaxies are already covered in the sampletheskybackgroundandaredistributedin6smallerbun- DR1sampleinsufficientnumberstoperformspatiallyresolved dlesalongacircleof∼ 72(cid:48)(cid:48) radiusaroundtheFoVcenter. The comparison studies. In addition to global galaxy parameters remaining15fibersarecoupledtothecalibrationunitofthein- presented previously, we show the [Oiii]/Hβ vs. [Nii]/Hα strument. emission-linediagnosticdiagram(Baldwinetal.1981;Veilleux Each CALIFA galaxy is targeted twice with different spec- & Osterbrock 1987) for the nucleus in Fig. 7. It is constructed tralsettings,alow-resolution(V500)setupcoveringthenominal fromthemostcentralspaxelatthecoordinatesofeachCALIFA wavelengthrange3745–7500ÅatspectralresolutionofR∼850, galaxy center (Table 1 excluding objects with a wrong astrom- andamid-resolution(V1200)grismcoveringthenominalwave- etryinthedataasdiscussedlaterinSect.5.2). Afterremoving the stellar continuum using a spectral synthesis approach, we lengthrange3400–4840ÅataspectralresolutionofR ∼ 1650. measured the emission line fluxes by fitting Gaussians to their The useful wavelength range is, however, reduced by internal profiles in the residual spectra. A variety of different ioniza- vignetting within the spectrograph for several fibers to 4240– tionmechanismscanbefoundintheDR1galaxysample,rang- 7140Å and 3650–4620Å in the worst case for the V500 and ing from pure star formation to Seyfert-type active galactic nu- V1200,respectively. Threeditheredpointingsaretakenforeach clei (AGN), with a significant number of galaxies in between. object to reach a filling factor of 100% across the entire FoV. Also,Low-IonizationNuclearEmission-lineRegions(LINERs) The exposure time per pointing is fixed to 900s for the V500 (Heckman 1980), which are predominantly hosted by bulge- and 1800s for the V1200. The latter is further split into 2 or 3 dominated or elliptical galaxies, appear to be frequent. Robust individualexposures. classificationofindividualgalaxiesaccordingtosuchascheme We are continuously upgrading the CALIFA pipeline (see can be complicated, i.e., in border-line cases or due to system- S12 for details). The main improvements to the data reduction aticuncertaintiesintheemission-linemeasurements,aswellas pipelineusedtoproducetheDR1dataarebrieflymentionedin adoptingothertypesofdiagnosticdiagrams(e.g.CidFernandes the next section followed by a detailed characterization of the et al. 2010), or a different classification scheme. This has been propagatednoise. considered in the Kehrig et al. (2012) study of the ionization sourceoftheinterstellarmediumintwoLINER-likeearly-type 3.1. ImprovementsontheCALIFAdatareductionscheme CALIFA galaxies. Rather than to suggest or impose a certain classificationofindividualgalaxynucleifortheDR1sample,we Atthe firststages ofthe project, we employedthe R3D data re- present one particular representation here only to demonstrate duction package (Sánchez 2006) as the basis to develop a fully thediversityoftheDR1galaxysample. automaticIFSdatareductionpipelinededicatedtotheCALIFA Articlenumber,page4of27 Husemannetal.:TheCALIFAsurveyII.Firstpublicdatarelease 2.0 1.8 Observed (Ok) Error ( k) 3500000 1.6 Model (Mk) Residuals (Ok Mk) 1] 1.4 s3000000 A el 1.2 x 2 i2500000 m p c 1.0 f 2s 0.8 er o2000000 erg 0.6 mb 1500000 16 0.06 u 0.04 N 0 1000000 1 0.02 [ 0.00 f 500000 0.02 0.04 0.06 0 4500 5000 5500 6000 6500 4 2 0 2 4 wavelength[A] (O k M k)/ k Fig.8. Exampleofastellarpopulationfitwithstarlighttothecentral Fig.9. Histogramoftheobserved(O )minusmodel(M )residu- λk λk V500 spectrum of NGC 5966, restricted to the unvignetted part. The alsateachwavelengthnormalizedbytheformalfluxerror((cid:15) ). The λk observed,modeledandresidualspectrumareshowntogetherwiththe modelspectraareobtainedfromstarlightfitsforthestellarcontinuum, pipeline produced ±1σ error. Sky and galaxy emission line regions excludingthemainemissionlines,aswellasbadpixels.Thehistogram maskedduringthefittingareindicatedbythegrayshadedareas. describesalmostaGaussiancenteredat0withadispersionof∼ 0.8. ThebluelineindicatesaGaussiandistributioncenteredat0withadis- persionof1,normalizedtothetotalnumberofpixelsforcomparison. Ontheassumptionthatthespectralresidualsareduetonoise(i.e.,ne- data. A description of that pipeline and the individual reduc- glectingmodelimperfections),thisfiguredemonstratesthatthepipeline tion steps was presented by S12. With the aim of improving errorestimatesarereliable. the flexibility, portability, maintenance and capabilities of the pipeline,mostofthedatareductiontaskshavebeentransformed toaPython-basedarchitecture. Neglecting systematic deviations of the model spectra with respect to the real data in some wavelength regions, one would Themaindriverforthepipelineimprovementswastoimple- expect the residuals R to be typically of the order of (cid:15) . In- mentthepropagationofthePoissonplusread-outnoiseaswell λk λk deed, we find that this is the case. The histogram of U = as bad pixels caused by cosmic ray hits, bad CCD columns, or λk the effect of vignetting, from the raw data to the final CALIFA Rλk/(cid:15)λk(Fig.9)wasobtainedfromover108datapointsofnearly 105 spectra for the V500 spectra distributed within this DR1. data product in a consistent way. This was not possible with Emission lines and faulty pixels were excluded from the statis- the reduction scheme adopted by the previous pipeline version tics(shadedareasinFig.8),asthespectralfitsareonlymeantto (V1.2),becausethenumerousinterpolationandresamplingsteps reproducethestellarcomponent. Thehistogramfollowsnearly did not allow a reliable error propagation. Details of the most a Gaussian shape, centered at −0.04 with a standard deviation importantimprovementsforthecurrentpipelineversion(V1.3c) of 0.8. The expected standard deviation would be 1.0 if the er- areprovidedinAppendixA. rorspectrawouldstatisticallyagreewiththenoiseinthe resid- The final output of the V1.3c pipeline are cubes of inten- ual spectra and assuming that the stellar population model is a sity, errors and bad pixels. Details on the data format are de- perfect fit. Selecting different wavelength ranges for this com- scribedinSect.4. Belowweevaluatespecificallytheaccuracy parison to avoid regions with systematic template mismatches ofthepipeline-producednoiseestimatesandcharacterizeeffects mainlychangesthecentroidofthedistributionwhereasthestan- ofcorrelatednoisethatshouldbeproperlytakenintoaccountin darddeviationisnearlyconstant.Thus,thepropagatederrorsare anyscientificanalysis. overestimatedby∼20%inthemean. Thiswasalsoverifiedfor theV1200setupusingthesamemethod. Theoverallconclusion ofthistestisthattheerrorsprovidedinDR1arerobust, witha 3.2. Accuracyofthepropagatednoise slightsystematicoverestimationof∼20%thatcanbetakeninto accountduringanyanalysisifneeded. ThederivationoferrorspectrainIFSdataisacomplextask,for which there are no well established recipes. It is therefore rel- evanttoverifythereliabilityofthepipelineerrors((cid:15) ). Anap- λ 3.3. Characterizationofspatiallycorrelatednoise proximate assessment of the error spectra was carried out with the aid of full spectral continuum fitting described by Cid Fer- Itisoftennecessarytospatiallyco-addspaxelsinthedatacubes nandes et al. (in preparation), and Gonzalez Delgado et al. (in toachieveaminimumS/Ninthespectraforaspecificapplica- preparation). The CALIFA spectra are decomposed in terms tion. ForCALIFAweadoptaninverse-distanceweightedimage of combinations of SSP spectra from González Delgado et al. reconstructionschemesofar,whichaveragesthefluxamongall (2005) and Vazdekis et al. (2010) including a dust extinction fibers within 5(cid:48)(cid:48) for a given spaxel in the final datacube by as- termfollowingtheCardellietal.(1989)law.Anexampleofsuch suming a 2D Gaussian profile with a dispersion of 1(cid:48)(cid:48) for the afitisshownforacentralV500spectruminFig.8forillustrative individual weighting factors (see S12 for details). Like many purposes. For a certain spectrum k it presents the observation otherimageresamplingschemesitintroducessignificantcorre- (O ),thebest-fitmodel(M ),theresiduals(R =O −M ), lationbetweenthespaxelsinthefinaldatacubes.Thiscanbeun- λk λk λk λk λk andtheprovidedpipelineerrorspectrum((cid:15) ). derstoodfromsimplearguments.EachCALIFAdatasetcontains λk Articlenumber,page5of27 5.0 Here, we characterize the effect of the correlated noise by determiningtheratioofthe“real”error((cid:15) ),directlyestimated V500 real 4.5 fromtheresidualsR ,totheanalyticallypropagatederror((cid:15) ) Target S/N = 20 λk bin of binned spectra as a function of bin for a certain target S/N. 4.0 The results obtained for all DR1 datasets are shown in Fig. 10 3.5 for the two instrumental setups with a target S/N level of 20. /albin3.0 Tlohgearoitbhsmerivcefduntrcetinodns1can be sufficiently described by a simple re2.5 (cid:15) =(cid:15) (cid:2)1+αlogn(cid:3) , (1) real bin 2.0 withnthenumberofspaxelsperbin. The values for the slope α range from 1.35 to 1.45 with a 1.5 meanofα = 1.4,fortargetS/Nvaluesbetween10and60. The best fit: =1.38 fits to the data result in less accurate exponents for target S/N 1.0 ratiosof 10and 60giventhe poorsampling towardslarge- and 5.0 small-size bins, but the overall shape is preserved. This means V1200 thatαmainlydependsonthenumberofspaxelsperbinandnot 4.5 Target S/N = 20 onthetargetS/N. 4.0 3.5 4. CALIFAdataformatandcharacteristics n bi3.0 TheCALIFAdataarestoredanddeliveredasdatacubes(three- /al dimensionaldata)inthestandardbinaryFITSformatandconsist e r2.5 offourFITSHeader/Dataunits(HDU).Thesedatacubesrepre- sent (1) the measured flux densities, corrected for Galactic ex- 2.0 tinction as described in S12, in units of 10−16ergs−1cm−2Å−1 1.5 (primary datacube), (2) associated errors, (3) error weighting factors, and (4) bad pixels flags (Table 2). They allow users to best fit: =1.35 1.0 properlytakeintoaccountthecharacteristicsofeachdatasetcon- 0 20 40 60 80 100 cerningbadpixelsandnoisefortheirspecificanalysis. Thefirst n twoaxesofthecubescorrespondtothespatialdimensionalong right ascension and declination with a 1(cid:48)(cid:48) ×1(cid:48)(cid:48) sampling. The Fig.10. Ratiooftherealerror((cid:15)real)totheanalyticallypropagated third dimension represents the wavelength along a linear grid. e(urrpopre(r(cid:15)bpina)neals)aanfudncVti1o2n00of(nlouwmebrepraonfeslp)adxaetlasopferDbRin1foatraalltatrhgeetVS50/N0 Thedimensionsofeachdatacube(Nα,Nδ,andNλ),aswellasthe spectralsampling(d )andconstantresolution(δ )alongtheen- of 20. Grey shades mark the 1σ, 2σ and 3σ levels. The blue lines λ λ tirewavelengthrange,aresummarizedinTable3. Notethatthe representthebestfitlogarithmicfunctionwithα=1.38andα=1.35, spatialresolutionisworsethantheactualseeingduringtheob- respectively. servationbecausethelargeapertureofeachfiber(2(cid:48).(cid:48)7)strongly undersamplesthepointspreadfunction. ThefinalCALIFAspa- tial resolution is mainly set by the dither pattern and the image 993 physically independent spectra from the fibers of the three reconstruction scheme rather than the seeing. We evaluate this dithered pointings, but the final datacube consists of more than aspartofourqualitycontroltestsdiscussedbelowinSect.5.2. 4000spectraatasamplingof1(cid:48)(cid:48)×1(cid:48)(cid:48)perspaxel. Thisautomat- ically implies that the final spaxels cannot be completely inde- 4.1. Errordatacubes pendentfromeachotherwithintheCALIFAdatacubesthrough thecomplexcorrelationofsignalandnoisebetweenneighboring TheerrordatacubesinthefirstFITSextensioncorrespondtothe spaxels. associated1σnoiselevelofeachpixelasformallypropagatedby thepipeline.Asvalidationofoureffortstooptimizethepipeline, Inthelimitcaseofco-addingthespectraoftheentirecube, we verified that the measured noise is systematically lower by thepipelineanalyticallycalculatesanerrorweightingfactorfor ∼20% than the formal error vector for individual spaxels (see eachpixelsuchthattheformalerroroftheco-addedspectrumis Sect.3.2). Inthecaseofbadpixels,weassignedanerrorvalue identical to the one obtained by co-adding the individual fiber that is roughly ten orders of magnitude higher than the typical spectra. Of course, this is an unrealistic case, because only value for the considered dataset. Any analysis based on the χ2 spectra within a small zone are typically co-added to preserve statisticswillimplicitlytakeintoaccountbadpixelsiftheerror some spatial resolution. A popular method for adaptive bin- vectorisconsidered.Thecorrelationofnoisebecomesimportant ningistheVoronoi-binningschemeimplementedforopticalIFS onlyincaseswheretheCALIFAdataneedtobespatiallybinned data by Cappellari & Copin (2003). It assumes that the spec- asdiscussedinSect.3.3. ThesecondFITSextensionreportsthe traarecompletelyindependentofeachothertocomputethere- quired bin size for a given target S/N. Blindly adopting such a error scaling factor for each pixel in the limiting case that all validspaxelsofthecubewouldbeco-added. Suggestionsabout binningschemetoCALIFAdatacubeswillleadtoincorrectre- how to deal with the correlated noise and proper usage of the sults, because the assumption that the spectra are independent errorscalingfactorsweredescribedaboveindetail. is not valid. Either the bin sizes will be smaller than required toachievethetargetS/N,oralternativelyexpressed,theerrorof 1 Anindependentestimateofthisempiricalrelation,proposedbyCid theco-addedspectrawillbehigherthanformallyexpectedgiven Fernandes et al. (in preparation), is completely consistent within the theerrorofindividualspaxels. estimateduncertainties. Articlenumber,page6of27 Husemannetal.:TheCALIFAsurveyII.Firstpublicdatarelease 70 100 100 ] 96 % 60 [ 92 s 90 el 50 88 x pi el 40 84 d 80 pix 80 vali y 30 76 f 70 o 20 72 n o 68 ti 60 10 ac V500 V500 V1200 64 fr V1200 0 60 50 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 4000 4500 5000 5500 6000 6500 7000 x pixel x pixel wavelength [A] Fig.11. FractionofvalidpixelsineachspectrumacrosstheCALIFAFoV(leftpanels)andasafunctionofwavelength(rightpanel)forthe V500andV1200setup. Thespaxelsmostseverelyaffectedbythevignettingintheblueandredpartofthespectraleadtotheringlikestructure aroundtheFoVcenter.ThebluepartoftheV1200datadoesnotshowavignettingeffectherebecausewecutoffthewavelengthrangeinthefinal dataalreadyat3650Åduetotheverylowsensitivityintheblue.FourbadCCDcolumnsarevisiblethatleadtoasignificantlyreducedfractionof validpixelsatnarrowwavelengthregions. Table2.CALIFAFITSfilestructure HDU Extensionname Format Content 0 Primary 32-bitfloat fluxdensityinunitsof10−16ergs−1cm−2Å−1 1 ERROR 32-bitfloat 1σerroronthefluxdensity 2 ERRWEIGHT 32-bitfloat errorweightingfactor 3 BADPIX 8-bitinteger badpixelflags(1=bad,0=good) Table3.DimensionandsamplingofCALIFAdatacubes ThehexagonalPPakFoVisresampledtoarectangulargrid, sothattheuncoveredcornersarefilledwithzeros.Thesearealso Setup Nαa Nδa Nλa λstartb λendc dλd δλe flagged as bad pixels for consistency, whereas the residuals of V500 78 73 1877 3749Å 7501Å 2.0Å 6.0Å brightnight-skyemissionlinesarenotflaggedasbadpixels.The V1200 78 73 1701 3650Å 4840Å 0.7Å 2.3Å strengthoftheirresidualsisdifferentforeachdatasetandmight behandleddifferentlydependingonthespecificdataanalysis. Notes.(a)Numberofpixelsineachdimension.(b)Wavelengthofthefirst pixelonthewavelengthdirection.(c)Wavelengthofthelastpixelonthe wavelength direction. (d) Wavelength sampling per pixel. (e) Homoge- 4.3. FITSheaderinformation nizedspectralresolution(FWHM)overtheentirewavelengthrange. The FITS header contains the standard keywords that register thespatialaxestothestandardWorldCoordinateSystem(WCS, Greisen & Calabretta 2002) and the wavelength to the spectral 4.2. Badpixeldatacubes axis in a linear grid. Each CALIFA datacube contains the full FITS header information of all raw frames from which it was Bad pixeldatacubes are producedby the pipelineand stored in created,whereeachheaderentryisexpandedwithauniquepre- thethirdFITSextension. Theyreportpixelsforwhichnosuffi- fix for a given pointing/frame. The prefixconsists of the string cientinformationisavailableintherawdatabecauseofcosmic “PPAK” followed by the designation of the pointing PREF, rays,badCCDcolumns,ortheeffectofvignetting. Thedataat whichcanbe“P1”,“P2”,or“P3”forthethreepointingsofthe badpixelshavebeeninterpolated,anditisconsiderednotusable V500setup,or“P1F1”,“P1F2”,“P2F1”,etc...,fortheindividual evenifthespectrumlooks“good”atthoselocations.TheV1200 framestakenforeachpointingoftheV1200setup. dataislessaffectedbycosmicrayscomparedtotheV500data, The reduction pipeline also collects information regarding, becauseseveralframesareobservedperpointing. Thedataata e.g.,skybrightness,flexureoffsets,Galacticextinction,approx- badpixelarethereforerestoredfromtheotheravailableframe(s) imate limiting magnitude, etc., and adds it to the FITS header. althoughthisresultsinalowerS/N. Header keywords that may be of general interest for the anal- ysis and/or evaluation of the data are summarized in Table 4 The distribution of bad pixels is not homogeneous within the datacube because of the vignetting effect as noted in S12. for convenience. Note that the systemic velocity of the galax- ies (MED_VEL) automatically estimated by the pipeline is not In Fig. 11, we present the typical fraction of valid pixels along robustlymeasuredfromtheV1200data,becauseofthesmaller the spatial and spectral axis for the V500 and V1200 setup, re- wavelengthcoverageandlowerS/NcomparedtotheV500data. spectively. Note that four bad CCD columns have been identi- fied, which lead to four wavelength regions where the fraction ofvalidpixelsissignificantlyreduced. Thevignettingeffectof 5. DataQuality theinstrumentresultsinawavelengthcoveragereducedbyupto ∼25%forsomefibersontheblueand/orredsideofthespectral This first CALIFA data release provides science grade data of range. 100 galaxies to the community. Hence, in order to define the Articlenumber,page7of27 Table4.MainFITSheaderkeywordsandtheirmeaning Keyword datatype Meaning OBJECT string Nameofthetargetgalaxy CALIFAID integer IDofthegalaxy NAXIS1 integer Numberofpixelsalongrightascensionaxis(N ) α NAXIS2 integer Numberofpixelsalongdeclinationaxis(N ) δ NAXIS3 integer Numberofpixelsalongwavelengthaxis(N ) λ CRPIX1 float Referencepixelofthegalaxycenterinrightascension CRVAL1 float Rightascensionα(J2000)ofthegalaxycenterindegrees CDELT1 float Samplingalongrightascensionaxisinarcsec CRPIX2 float Referencepixelofthegalaxycenterindeclination CRVAL2 float Declinationδ(J2000)ofthegalaxycenterindegrees CDELT2 float Samplingalongdeclinationaxisinarcsec CRVAL3 float WavelengthofthefirstpixelalongthewavelengthaxisinÅ CDELT3 float SamplingofthewavelengthaxisinÅ hierarchPIPEVERS string Versionofthereductionpipeline hierarchPIPEUNITS string Unitsofthefluxdensity hierarchPIPEGALEXTAV float GalacticV bandextinctionalongline-of-sight hierarchPIPEREDUDATE string Date/timethedatawerereduced hierarchPIPEVMAG3SIG float Estimated3σsurfacebrightnessdepthinmagarcsec−2 MED_VEL float Estimatedsystemicvelocityinkm/s hierarchPPAKPREFDATE-OBS string Date/timeoftheobservation hierarchPPAKPREFUT_START float StartoftheobservationinsecondsUTtime hierarchPPAKPREFUT_END float EndoftheobservationinsecondsUTtime hierarchPPAKPREFMJD-OBS float ModifiedJuliandateoftheobservation hierarchPPAKPREFAIRMASS float Airmassduringtheobservation hierarchPPAKPREFEXPTIM float Exposuretimeoftheobservation hierarchPPAKPREFHVCOR float Line-of-sightdifferencetohelocentricvelocity hierarchPPAKPREFEXT_V float V bandatmosphericextinctioninmagnitudes hierarchPPAKPREFPIPEFLEXXOFF float Measuredflexureoffsetinx-directioninCCDpixels hierarchPPAKPREFPIPEFLEXYOFF float Measuredflexureoffsetiny-directioninCCDpixels hierarchPPAKPREFPIPESPECRES float Homogenizedspectralresolution(FWHM)inÅ hierarchPPAKPREFPIPESKYMEAN float Meansurfacebrightness(µ )duringobservation sky set of galaxies to be released, a detailed characterization of the The QC parameters and QC flags can be found in Tables 5 dataqualityfortheexistingdataisneededtoselectanddefinea and6fortheV500andV1200data,respectively,whicharealso minimalusefulsuiteofqualitycontrol(QC)parameters. availableinelectronicformontheDR1webpageandaccessible Overall, the final data quality for CALIFA depends on a throughtheVirtualObservatory(seeSect.6.3fordetails). numberofindependentfactorssuchas(i)generalinstrumentre- liability and temperature stability, (ii) ambient conditions dur- 5.1. Initialreductionpipelineflags ing observations, and (iii) the robustness of the data reduction pipeline. WedefineasetofparametersandQCflagsintheareas Asaninitialdescriptiontoevaluatethedataandreductionqual- of astrometric, spectroscopic and photometric characterization ity,weprovideeachofthefourflagspersetupthatcomedirectly that are measured for all galaxies. We amend these parame- fromthereductionprocess. Someoftheextendedparametersin ters with four quality flags for each of the two spectral setups the sections below will add to further validate and expand on (V500/V1200; eightintotal)thatsummarizethereductionpro- theseinitialflags. cessforeachgalaxyandindicatedataquality. Potential minor issues are noted with a value=1, while the WestronglyurgeuserstoconsidertheseQCparameterswith standardcasereceivesvalue=0. Galaxieswithmajorissues,i.e. regardtotheirscienceapplication.Forexample,ifasciencegoal flagvalues=2havebeenobservedaspartoftheCALIFAsurvey, focusesprimarilyonkinematics,thenasubstantialoffsetinab- but were excluded from this data release. The reduction flags soluteastrometricregistrationisnotalimitationfortheanalysis are: of any one galaxy. However, if, under the same circumstance, thesciencegoalrequiresderivingjointspatially-extendedinfor- – FLAG_RED_O:observingconditionsquality. mationfrommatchingwiththeSDSS,thencautionisadvised. Set to 1 if the night sky is brighter than µ = 20.5 V ThevaluesanduncertaintieslistedfortheindividualQCpa- magarcsec−2 (V500) or µ = 20.0 magarcsec−2 (V1200), B rametersareintendedtoprovidetheuserwithasummaryofthe respectively.Thereexistsacorrelationbetweenlimitingcon- information content of the CALIFA data on a specific galaxy tinuumsensitivityofthedatacubesandthenight-skybright- in order to allow for the initial assessment of whether or not a ness. For nights brighter than this limit the datacubes may specificdatacubecanbeusedforaplannedanalysis. Inthefol- notbeasdeepastargeted. lowing we display and comment on the distribution of the key Flagissetto2ifobservingconditionswerenon-photometric flags and QC parameters while demonstrating the overall sam- orifbackgroundofunknownoriginisseeninthedata. plepropertiesandthenatureofoutliers. – FLAG_RED_R:reduction/calibrationquality. Articlenumber,page8of27 Husemannetal.:TheCALIFAsurveyII.Firstpublicdatarelease Set to 1 if reduction deviates from the standard procedure, e.g. due to a lack of directly associated continuum or arc- V500 observations lamp exposures or a saturation in the available calibration V1200 observations dFalatag.issetto2ifmanualinterventionwasrequiredtorecover es15 i x aminimumofpossibledatafromtherawdata. a – FLAG_RED_W:wavelengthcalibrationquality. al g Set to 1 if the standard deviation of the pipeline-estimated 1 systemic velocity in different wavelength regions is larger R10 than25kms−1. D f Flagsetto2ifthedeviationismorethan2standarddevia- o tions,or34kms−1. er – FLAG_RED_V:visualinspectionquality. b m Summary of a visual inspection of the data. If there is an 5 u obviousdefectaffectingasmallfractionoftheFoV(likethe N presence of a strong line or a imperfectly traced fiber), flag issetto1. Itissetto2whenitisevidentthatthedatahave lowqualityforanyunknownreason. 0 Finally this flag is set to 1, even if all previous cases have 0.6 0.8 1.0 1.2 1.4 1.6 1.8 value=0,whenamastercontinuumormasterarcframe,in- seeing [arcsec] steadofanindividualframe,hasbeenusedduringthereduc- tionofanyoftheframesusedtocreatethefinaldatacube. Fig.12. DistributionoftheseeingduringtheCALIFAobservationsas measuredbytheautomaticDifferentialImageMotionMonitor(DIMM, 5.2. Astrometricaccuracyandspatialresolution Aceituno2004). 5.2.1. Astrometricregistrationaccuracy – NGC4470: Galaxywithdifficulttodefinecenter. Offsetof The first area of testing and evaluation of the pipeline output ∼9(cid:48)(cid:48)betweenthetwosetups. is the absolute astrometric registration of the datacube coordi- – NGC 4676A: As stated for V500 the center is not well de- nate systems to the International Coordinate Reference System finedforthisgalaxyandanoffsetof∼6(cid:48)(cid:48) existsbetweenthe (ICRS). Astrometric registration is of central importance when twosetups. CALIFA data are to be combined with e.g. imaging data from othersurveystoextractspatiallyresolvedinformationatcertain For this DR1 we provide the pipeline registration as de- locationsinagalaxy.ForthispurposetheCALIFApipelineuses scribedaboveanddonotcorrectoffsetsfoundthroughthesesep- asimpleschemewherebythetabulatedcoordinatesofthegalaxy arateexternalchecks. Infuturedatareleasesitisplannedtoim- V bandphotometriccenter, asgiveninTable1, areassignedto plement more sophisticated registration methods directly in the themeasuredbarycenterofthereconstructedimageintheCAL- pipelinetherebyreducingthenumberofoutliersandimproving IFAdatacubes. theoverallastrometricregistrationaccuracy.Wedescribetheas- Wetestedindependentlytherobustnessandaccuracyofthis trometricoffsetsforDR1withtheflagFLAG_ASTR,givenfor approach by both visual inspection of the assigned galaxy cen- theV500andV1200inTables5and6, respectively. ForV500 tersinbothsetups,aswellasinV500matchingthegalaxyloca- the values 0, 1, and 2 describe offsets <1(cid:48).(cid:48)4, 1(cid:48).(cid:48)4 to 3(cid:48).(cid:48)0, and tionofareconstructedgbandfromCALIFAto,whereavailable, >3(cid:48).(cid:48)0. IntheV1200tablevaluesforFLAG_ASTRof0and2re- correspondingSDSSimages. ThedeviationsoftheCALIFAas- fertorelativeoffsetsbetweenV500andV1200smallerorlarger trometryfromtheICRSaretypicallysmall. In the V500 setup the offset for most galaxies lies below than3(cid:48)(cid:48). 1(cid:48).(cid:48)4. However,threegalaxiesshowoffsetsbetween1(cid:48).(cid:48)4and3(cid:48)(cid:48), andfurthertwosubstantiallylargeroffsetsof∼12(cid:48)(cid:48)and∼22(cid:48)(cid:48). In 5.2.2. Seeingandspatialresolution thesecases,eitherthecentersofthegalaxiesarenotwelldefined duetodustlanesinstronglyinclinedsystem,orthegalaxieshave Theachievablespatialresolutionofimagingdataisusuallyde- abrightfieldstarneartheircenter: terminedbythetelescopeaperturetogetherwiththeatmospheric and instrumental seeing during ground-based observations. In – UGC10650: Edge-onspiralwithfuzzycenter. Registration thecaseofCALIFA,thecoarsesamplingofthelargePPakfibers shouldbebetterthan3(cid:48)(cid:48). modifiedbytheadopted3-foldditheringpatternasdescribedin – NGC 4676A: One galaxy of The Mice with unclear center andapossibleoffsetof∼1(cid:48).(cid:48)5intheastrometricregistration. S12imposesadditionallimitationsonthefinalspatialresolution. – NGC6032:Highlyinclinedgalaxywithprominentdustlane We measure the seeing in the CALIFA data from two in- anddifficulttodefinecenter. ∼2(cid:48)(cid:48)offsetinthecoordinates. dependentsources. Thefirstone, thedifferentialimagemotion – NGC 0477: Astrometric center set to nearby star; resulting monitor(DIMM,Aceituno2004),operatesfullyautomaticallyat offsetis∼12(cid:48)(cid:48). theCalarAltoobservatoryduringthenight2. TheDIMMseeing – NGC3991: Centerofthisinclinedspiralisnotthebrightest fortheDR1sampleisshowninFig.12andhasamedianvalue component. Thecorrectcenterandhencecoordinatesystem of 0(cid:48).(cid:48)9 (FWHM). We confirm this value with measurements of isoffsetby∼22(cid:48)(cid:48). 2 SincetheDIMMhastighteroperationalconstraints(humiditylower IntheV1200setupwetestedtheastrometricco-registration than80%andwindspeedlessthan12ms−1)thanthe3.5mtelescope, with respect to the V500 reference frame. Generally the regis- seeing information is not available for every CALIFA observation. tration is accurate to better than 2(cid:48)(cid:48). Only for two galaxies we Hence DIMM seeing values can be missing from Tables 5 and 6, but findamoresubstantialoffset: theoverallseeingdistributionisnotexpectedtobeverydifferent. Articlenumber,page9of27 NGC 7321 30 7 s 20 xie6 a Fig. 13. Left panel: V band image of ec] 10 gal 5 NGC 7321, an example of a CALIFA galaxy [arcs 0 r of 4 wdaittah.aRstiagrhitnptahneeFl:oVDitsotrmibeuatsiounreothfethPeSFFWofHthMe e 10 mb3 oftheCALIFAPSFasmeasuredfrom34cubes u 2 withasufficientlybrightstarinthefield. The N 20 median of the distribution is 3(cid:48).(cid:48)7; the spread 1 of values is due to the flux of the underlying 30 galaxystructureandundersamplingofthestel- 0 30 20 10 0 10 20 30 40 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 larimageandhencehigh-valueoutliersareup- [arcsec] FWHM of PSF [arcsec] perlimitsinthesecases. the width of the guide star on images taken by the Acquisition 25 andGuiding(AG)CameraofthePMASinstrument(Rothetal. V1200 2005),which,asexpected,hasaslightlylargermedianvalueof s V500 1(cid:48).(cid:48)15(FWHM).Thisconfirmsthatatmosphericandinstrumental ie20 x seeingarenotthelimitingfactorsinthespatialresolutionofthe a l a CALIFAcubes. g 1 15 Instead,thelargeapertureofeachfiber(2(cid:48).(cid:48)7diameter)inthe R D PPak fiber bundle does not permit to take full advantage of the f goodseeingconditions. ThefinalspatialresolutionoftheCAL- o 10 r IFAdataissetbyfibersizeandtheditherschemetogetherwith e b the adopted image reconstruction algorithm. The width of the m pointspreadfunction(PSF)isdirectlymeasuredfromtheV500 u 5 N CALIFA datacubes in 35 cases where a bright field star is in the FoV (see left panel of Fig. 13 for an example). The mea- sured FWHM distribution of the PSF (Fig. 13 right panel) has 0 2 3 4 5 6 7 a well-defined median value of 3(cid:48).(cid:48)7 (FWHM). To verify these Spectral resolution (FWHM) [A] measurements we simulated the expected CALIFA PSF for 1(cid:48)(cid:48) Gaussian seeing while adopting the fiber sampling, dither pat- Fig.14. Distributionofthefinalspectralresolution(FWHM)inthe tern and image reconstruction algorithm used for the DR1. We combinedcubesasmeasuredfromtheskylinesintheerrorcube. The obtainedaFWHMforthePSFof≥ 3(cid:48)(cid:48) asalowerlimit, which verticaldashedlinesindicatethespectralresolutiontowhichthespec- isinagreementwithourempiricalmeasurements. trawereaimedtobehomogenizedduringthedatareduction.Measure- This spatial resolution is for a large part set by the adopted mentsforV1200(blue, left)areupperlimitssincethenightskylines usedareintrinsicallyresolvedatthislevel. Thespreadisduetouncer- kernel for the inverse-distance weighting scheme for the image taintiesincalculatingthespectralresolutionfromonlyafewavailable reconstruction (see S12 for details). It was chosen to produce lines. smooth images without obvious structure caused by the dither pattern. Otherimagecombinationapproachessuchasdrizzling (Fruchter & Hook 2002) can be used to reach closer to the in- areavailableinthecorrespondingwavelengthrange.Sincethese trinsicspatialresolutionofCALIFAdata,whichissignificantly linesareresolvedattheresolutionofthissetupthederivedem- betterthan3(cid:48)(cid:48) duetotheditheringschemeused. Thechoiceof piricalresolutionisaconservativeupperlimit. image combination procedure depends on the actual goal and We tested the overall wavelength calibration in two ways. willbeanareaofimprovementinfutureCALIFAdatareleases. First, we measured the centroids of the same night sky lines and determined their scatter across the FoV. In all cases, the 5.3. Wavelengthcalibrationaccuracy centroidsarefullyconsistentwithzerooffsetfromthenominal wavelength, while the scatter is consistent with pure measure- During the data reduction the spectral resolution was homoge- menterrorsandtheabsenceofanydetectablesystematicspatial nizedtoreachatargetFWHMof6Å(V500)and2.3Å(V1200), variation. respectively, over the whole wavelength range, as explained in Secondly,wetestedwhetherthereexistsanysystematicoff- S12. To go beyond the simple flag-cut from the pipeline di- setsofthewavelengthcalibrationatdifferentwavelengthsofthe agnostics we tested the spectral resolution and the wavelength spectra. For this purpose we modeled the recession velocity in calibration,anditsspectralandspatialconsistency. the spectra of every galaxy’s coadded central 10(cid:48)(cid:48) apertures in The distribution of spectral resolutions for all galaxies is differentspectralregions. WedidthisusingthepenalizedPixel- showninFig.14forbothinstrumentsetups. Itwasestimatedby Fitting method (pPXF, Cappellari & Emsellem 2004) to piece- measuringthewidthofnightskylinesintheerrorcube, which wisefitstellarmodels, hencemeasuringcentralwavelengthsin contains a reliable trace of the sky lines in the input data. For several (3–5) independent spectral bins showing strong absorp- the V500 setup we find that it is centered on the target spectral tion features. The resulting velocity differences between these resolution (6Å). This is not the case for the V1200 setup. For binswereagainalwaysconsistentwithpuremeasurementnoise this setup only Hg pollution lines (Hgiλ4046Å and λ4358Å) andtheabsenceofsystematics. Articlenumber,page10of27