ebook img

Calibration and Parameterization Methods for the Libor Market Model PDF

69 Pages·2014·3.363 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calibration and Parameterization Methods for the Libor Market Model

BestMasters Springer awards “BestMasters” to the best application-oriented master’s theses, which were completed at renowned chairs of economic sciences in Germany, Austria, and Switzerland in 2013. Th e works received highest marks and were recommended for publication by supervisors. As a rule, they show a high degree of application orientation and deal with current issues from diff erent fi elds of economics. Th e series addresses practitioners as well as scientists and off ers guidance for early stage researchers. Christoph Hackl Calibration and Parameterization Methods for the Libor Market Model Christoph Hackl Vienna, Austria Masterthesis, University of Applied Sciences (bfi ) Vienna, Austria ISBN 978-3-658-04687-3 ISBN 978-3-658-04688-0 (eBook) DOI 10.1007/978-3-658-04688-0 Th e Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Library of Congress Control Number: 2013957423 Springer Gabler © Springer Fachmedien Wiesbaden 2014 Th is work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, compu- ter soft ware, or by similar or dissimilar methodology now known or hereaft er developed. Exempted from this legal reservation are brief excerpts in connection with reviews or schol- arly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. Th e use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal re- sponsibility for any errors or omissions that may be made. Th e publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer Gabler is a brand of Springer DE. Springer DE is part of Springer Science+Business Media. www.springer-gabler.de Foreword QuantitativeFinanceisatopicwhichhasbecomequitepopularinthelastdecade,com- biningtechniquesoutofthedisciplinesofmathematics,finance,statisticsandcomputer science. Modellingofinterestratesisahotpartofmodernquantitativefinanceandhas verywideapplicationforfinancialinstrumentspricingandriskmeasurement. The Libor Market Model is a mathematical no-arbitrage interest rate model which re- quiresastrongbackgroundinmathematical/statisticalfieldsandfinance. Inaddition,its applicationrequiresasoundknowledgeinthefieldofcomputersciencestoimplementthe wholecomputationallydemandingmodel. Itisalreadyquitealotofacademicresearch availablewhichdealwithspecialtopicsaboutMarketModelsbutishardtofindabook or paper which covers the full picture starting with the mathematical background up to building a model and calibrate it to market data with a special focus on speed and efficiencyofthemodel. Thisthesisstartswithanextensiveintroductiontothestatisticaltheoryunderlyingmar- ketmodels. Next,efficientrandomnumbergeneratorsaredescribed. Inthemainpart,a fullframeworktobuildandcalibrateaLiborMarketModelisexplained. Thisincludes the theoretical presentation of the model, computational formulas to calibrate model volatilities and correlations, factor reduction methods. In the analysis two calibration schemas are presented. One is based on cap volatilities and the second one uses swap- tionsascalibrationinstruments. Bothschemasarevalidatedintermsofcorrespondence betweenmodelled(simulated)andrealmarketpricesofcalibrationinstruments. Thedatausedintheanalysisbelongstostandardmarketinstrumentsandcanbeeasily obtainedfromanyfinancialinformationprovider. The calibration of interest rate models and especially the Libor Model is an open topic V Foreword nowadays in banking practice. Most crucial is the speed of this calibration and re- calibration for any comprehensive simulation framework. This paper addresses exactly thisissueaboutefficientsimulatorsandmostprecisecalibrationinstruments. Themod- ernparameterizationandcalibrationmethodoftheLiborMarketModelareimplemented inR.The quantitative results are comparedwithrespect to computationalandapplied marketdataefficiency. I hope that the findings of this analysis will bring their input into banking practice to improve the understanding and efficiency of both calibration and simulations from the LiborMarketModel. Dr. TatjanaMiazhynskaia VI Contents Foreword V 1. Introduction 1 1.1. Researchtopicanditsrelevance . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Researchquestion(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. Researchmethods/approach . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4. ThesisStructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Foundations of Mathematical Finance and Stochastic Calculus 5 2.1. InterestRatesandDerivatives . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2. StochasticCalculusandNo-ArbitragePricing . . . . . . . . . . . . . . . 11 2.3. MonteCarloSimulationandComputationalAspects . . . . . . . . . . . 16 2.3.1. MonteCarloMethods . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2. RandomNumbers. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3. Quasi-randomnumbersandAntithetics . . . . . . . . . . . . . . . 19 3. The Libor Market Model 21 3.1. LiborMarketModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2. Sensitivities(Greeks)intheLiborMarketModel. . . . . . . . . . . . . . 23 3.3. TermStructureInterpolationMethod . . . . . . . . . . . . . . . . . . . . 25 4. Volatility and Correlation in the Libor Market Model 31 4.1. ModelVolatilityCalibration . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2. ModelCorrelationCalibration . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3. FactorReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5. Applications and Results 39 5.1. ParameterizationandCalibrationResults. . . . . . . . . . . . . . . . . . 39 5.1.1. Calibrationtocapvolatilities . . . . . . . . . . . . . . . . . . . . 39 5.1.2. Calibrationtoswaptionvolatilities . . . . . . . . . . . . . . . . . 42 VII Contents 5.2. PricingApplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.1. Caps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.2. Swaptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3. Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.4. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4.1. Validationofcappricing . . . . . . . . . . . . . . . . . . . . . . . 49 5.4.2. Validationofswaptionpricing . . . . . . . . . . . . . . . . . . . . 50 5.4.3. ConvergenceSpeed . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6. Conclusion 55 7. Bibliography 57 A. Appendix: Proofs 59 B. Appendix: Graphs 63 VIII List of Abbreviations LiborMarketModel-LMM StochasticDifferentialEquation-SDE EquivalentMartingaleMeasure-EMM Nelson-SiegelSvensson-NSS Atthemoney-ATM IX

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.