Table Of ContentBestMasters
Springer awards “BestMasters” to the best application-oriented master’s theses,
which were completed at renowned chairs of economic sciences in Germany,
Austria, and Switzerland in 2013.
Th e works received highest marks and were recommended for publication by
supervisors. As a rule, they show a high degree of application orientation and deal
with current issues from diff erent fi elds of economics.
Th e series addresses practitioners as well as scientists and off ers guidance for early
stage researchers.
Christoph Hackl
Calibration and
Parameterization
Methods for the
Libor Market Model
Christoph Hackl
Vienna, Austria
Masterthesis, University of Applied Sciences (bfi ) Vienna, Austria
ISBN 978-3-658-04687-3 ISBN 978-3-658-04688-0 (eBook)
DOI 10.1007/978-3-658-04688-0
Th e Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.
Library of Congress Control Number: 2013957423
Springer Gabler
© Springer Fachmedien Wiesbaden 2014
Th is work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, compu-
ter soft ware, or by similar or dissimilar methodology now known or hereaft er developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or schol-
arly analysis or material supplied specifi cally for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of
the Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
Th e use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specifi c statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date
of publication, neither the authors nor the editors nor the publisher can accept any legal re-
sponsibility for any errors or omissions that may be made. Th e publisher makes no warranty,
express or implied, with respect to the material contained herein.
Printed on acid-free paper
Springer Gabler is a brand of Springer DE.
Springer DE is part of Springer Science+Business Media.
www.springer-gabler.de
Foreword
QuantitativeFinanceisatopicwhichhasbecomequitepopularinthelastdecade,com-
biningtechniquesoutofthedisciplinesofmathematics,finance,statisticsandcomputer
science. Modellingofinterestratesisahotpartofmodernquantitativefinanceandhas
verywideapplicationforfinancialinstrumentspricingandriskmeasurement.
The Libor Market Model is a mathematical no-arbitrage interest rate model which re-
quiresastrongbackgroundinmathematical/statisticalfieldsandfinance. Inaddition,its
applicationrequiresasoundknowledgeinthefieldofcomputersciencestoimplementthe
wholecomputationallydemandingmodel. Itisalreadyquitealotofacademicresearch
availablewhichdealwithspecialtopicsaboutMarketModelsbutishardtofindabook
or paper which covers the full picture starting with the mathematical background up
to building a model and calibrate it to market data with a special focus on speed and
efficiencyofthemodel.
Thisthesisstartswithanextensiveintroductiontothestatisticaltheoryunderlyingmar-
ketmodels. Next,efficientrandomnumbergeneratorsaredescribed. Inthemainpart,a
fullframeworktobuildandcalibrateaLiborMarketModelisexplained. Thisincludes
the theoretical presentation of the model, computational formulas to calibrate model
volatilities and correlations, factor reduction methods. In the analysis two calibration
schemas are presented. One is based on cap volatilities and the second one uses swap-
tionsascalibrationinstruments. Bothschemasarevalidatedintermsofcorrespondence
betweenmodelled(simulated)andrealmarketpricesofcalibrationinstruments.
Thedatausedintheanalysisbelongstostandardmarketinstrumentsandcanbeeasily
obtainedfromanyfinancialinformationprovider.
The calibration of interest rate models and especially the Libor Model is an open topic
V
Foreword
nowadays in banking practice. Most crucial is the speed of this calibration and re-
calibration for any comprehensive simulation framework. This paper addresses exactly
thisissueaboutefficientsimulatorsandmostprecisecalibrationinstruments. Themod-
ernparameterizationandcalibrationmethodoftheLiborMarketModelareimplemented
inR.The quantitative results are comparedwithrespect to computationalandapplied
marketdataefficiency.
I hope that the findings of this analysis will bring their input into banking practice to
improve the understanding and efficiency of both calibration and simulations from the
LiborMarketModel.
Dr. TatjanaMiazhynskaia
VI
Contents
Foreword V
1. Introduction 1
1.1. Researchtopicanditsrelevance . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Researchquestion(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Researchmethods/approach . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4. ThesisStructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Foundations of Mathematical Finance and Stochastic Calculus 5
2.1. InterestRatesandDerivatives . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. StochasticCalculusandNo-ArbitragePricing . . . . . . . . . . . . . . . 11
2.3. MonteCarloSimulationandComputationalAspects . . . . . . . . . . . 16
2.3.1. MonteCarloMethods . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2. RandomNumbers. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3. Quasi-randomnumbersandAntithetics . . . . . . . . . . . . . . . 19
3. The Libor Market Model 21
3.1. LiborMarketModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Sensitivities(Greeks)intheLiborMarketModel. . . . . . . . . . . . . . 23
3.3. TermStructureInterpolationMethod . . . . . . . . . . . . . . . . . . . . 25
4. Volatility and Correlation in the Libor Market Model 31
4.1. ModelVolatilityCalibration . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2. ModelCorrelationCalibration . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3. FactorReduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5. Applications and Results 39
5.1. ParameterizationandCalibrationResults. . . . . . . . . . . . . . . . . . 39
5.1.1. Calibrationtocapvolatilities . . . . . . . . . . . . . . . . . . . . 39
5.1.2. Calibrationtoswaptionvolatilities . . . . . . . . . . . . . . . . . 42
VII
Contents
5.2. PricingApplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1. Caps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2. Swaptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3. Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.1. Validationofcappricing . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.2. Validationofswaptionpricing . . . . . . . . . . . . . . . . . . . . 50
5.4.3. ConvergenceSpeed . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6. Conclusion 55
7. Bibliography 57
A. Appendix: Proofs 59
B. Appendix: Graphs 63
VIII
List of Abbreviations
LiborMarketModel-LMM
StochasticDifferentialEquation-SDE
EquivalentMartingaleMeasure-EMM
Nelson-SiegelSvensson-NSS
Atthemoney-ATM
IX