Calculus Applications and Technology T H I R D E D I T I O N This page intentionally left blank Calculus Applications and Technology T H I R D E D I T I O N Edmond C. Tomastik University of Connecticut With Interactive Illustrations by Hu Hohn, Massachusetts School of Art Jean Marie McDill, California Polytechnic State University, San Luis Obispo Agnes Rash, St. Joseph’s University Australia • Canada • Mexico • Singapore • Spain UnitedKingdom • UnitedStates Publisher: CurtHinrichs TextDesigner: JohnEdeen DevelopmentEditor: CheryllLinthicum ArtEditor:AnnSeitz AssistantEditor:AnnDay PhotoResearcher: GretchenMiller EditorialAssistant: KatherineBrayton CopyEditor: BarbaraWillette TechnologyProjectManager: EarlPerry Illustrator: HearthsidePublishingServices/JadeMyers MarketingManager: TomZiolkowski CoverDesigner: RonStanton MarketingAssistant: JessicaBothwell CoverImage: GaryHolscher AdvertisingProjectManager: NathanielBergson-Michelson InteriorPrinter: Quebecor/Taunton SeniorProjectManager,EditorialProduction: JanetHill CoverPrinter: PhoenixColorCorp Print/MediaBuyer: BarbaraBritton Compositor: Techsetters,Inc. ProductionService: HearthsidePublication Services/AnneSeitz COPYRIGHT©2005Brooks/Cole,adivisionofThomson ThomsonBrooks/Cole Learning,Inc.ThomsonLearningTMisatrademarkusedherein 10DavisDrive underlicense. Belmont,CA94002 USA ALLRIGHTSRESERVED.Nopartofthisworkcoveredby thecopyrighthereonmaybereproducedorusedinanyform Asia orbyanymeans—graphic,electronic,ormechanical, ThomsonLearning includingbutnotlimitedtophotocopying,recording,taping, 5ShentonWay#01-01 Webdistribution,informationnetworks,orinformationstorage UICBuilding andretrievalsystems—withoutthewrittenpermissionofthe Singapore068808 publisher. Australia/NewZealand PrintedintheUnitedStatesofAmerica ThomsonLearning 102DoddsStreet 1 2 3 4 5 6 7 08 07 06 05 04 Southbank,Victoria3006 Australia Formoreinformationaboutourproducts,contactusat: Canada ThomsonLearningAcademicResourceCenter Nelson 1-800-423-0563 1120BirchmountRoad Forpermissiontousematerialfromthistextorproduct, Toronto,OntarioM1K5G4 submitarequestonlineat Canada http://www.thomsonrights.com. Anyadditionalquestionsaboutpermissionscanbe Europe/MiddleEast/Africa [email protected] ThomsonLearning HighHolbornHouse 50/51BedfordRow LondonWC1R4LR COPYRIGHT2005ThomsonLearning,Inc.AllRights UnitedKingdom Reserved. ThomsonLearningWebTutorTMisatrademark ofThomsonLearning,Inc. LatinAmerica ThomsonLearning Seneca,53 LibraryofCongressControlNumber: 2004104623 ColoniaPolanco 11560MexicoD.F. StudentEdition: ISBN0-534-46496-3 Mexico Spain/Portugal Instructor’sEdition: ISBN0-534-46498-X Paraninfo CalleMagallanes,25 28015Madrid,Spain An Overview of Third Edition Changes 1. Inthisneweditionwehavefollowedageneralphilosophyofdividingthematerial intosmaller,moremanageablesections. Thishasresultedinanincreaseinthe number of sections. We think this makes it easier for the instructor and the student,givesmoreflexibility,andcreatesabetterflowofmaterial. 2. Toaddtotheflexibility,manysectionsnowhaveenrichmentsubsections. Ma- terialinsuchenrichmentsubsectionsisnotneededinthesubsequenttext(except possiblyinlaterenrichmentsubsections). Nowinstructorscaneasilytailorthe materialinthetexttoteachacourseatdifferentlevels. 3. Thethirdeditionhasevenmorereferencedreal-lifeexamples. Itisimportantto realizethatthemathematicalmodelspresentedinthesereferencedexamplesare modelscreatedbytheexpertsintheirfieldsandpublishedinrefereedjournals. So notonlyisthedatainthesereferencedexamplesrealdata,butthemathematical modelsbasedonthisrealdatahavebeencreatedbyexpertsintheirfields(and notbyus). 4. Mathematicalmodelingisstressedinthisedition. Mathematicalmodelingisan attempttodescribesomepartoftherealworldinmathematicalterms. Already atthebeginningofSection1.2wedescribethethreestepsinmathematicalmod- eling: formulation, mathematical manipulation, and evaluation. We return to thisthemeoften. Forexample,inSection5.6onoptimizationandmodelingwe giveasix-stepprocedureformathematicalmodelingspecificallyusefulinopti- mization. Essentiallyeverysectionhasexamplesandexercisesinmathematical modeling. 5. Thiseditionalsoincludesmanymoreopportunitiestomodelbycurvefitting. Inthiskindofmodelingwehaveasetofdataconnectingtwovariables,x and y,andgraphedinthexy-plane. Wethentrytofindafunctiony =f(x)whose graph comes as close as possible to the data. This material is found in a new Chapter2andcanbeskippedwithoutanylossofcontinuityintheremainderof thetext. Curve-fittingexercisesareclearlymarkedassuch. 6. The text is now technology independent. Graphing calculators or computers workjustaswellwiththetext. 7. Adiskwithinteractiveillustrationsisnowincludedwitheachtext. Thesein- teractiveillustrationsprovidethestudentandinstructorwithwonderfuldemon- strationsofmanyoftheimportantideasinthecalculus. Theyappearinevery chapter. These demonstrations and explorations are highlighted in the text at appropriatetimes. Theyprovideanextraordinarymeansofobtainingdeepand clearinsightsintotheimportantconcepts. Weareextremelyexcitedtopresent theseinthisformat. v vi AnOverviewofThirdEditionChanges Chapter1. Functions. Thischapternowcontainsfivesections: 1.1,Functions; 1.2,MathematicalModels;1.3,ExponentialModels;1.4,CombinationsofFunctions; and1.5,Logarithms. Thematerialthatcoveredmodelingwithleastsquareshasall beenmovedtoanewChapter2. Mostofthematerialinthesectionsonquadraticsand specialfunctionshasbeenmovedtotheReviewAppendix. Ageometricdefinition ofcontinuitynowappearsinthefirstsection. Chapter2. ModelingwithLeastSquares. Thisisanewchapterandplacesall thematerialonleastsquaresthatwasoriginallyinChapter1intothisnewchapter. Instructorswhowishcanignorethematerialinthischapter. Chapter 3. Limits and the Derivative. This chapter has been substantially revised. The material on the limit definition of continuity is now an “enrichment” subsectionofthefirstsectiononlimitsandisnotneededintheremainderofthetext. Thematerialonlimitsatinfinityhasbeenmovedtoalaterchapter. Thesectiononrates ofchangenowhasmoreexamplesofaverageratesofchange. Moreemphasisisput oninterpretationsofratesofchangeandonunits. Theoldsectiononderivativeshas beenmadeintotwosections,thefirstonderivativesandthesecondonlocallinearity. Thenewsectiononderivativeshasmoreemphasisongraphingthederivativegiven thefunctionandalsooninterpretations. Thesectiononlocallinearitynowincludes marginalanalysisandtheeconomicinterpretationofthederivativesofcost,revenue, andprofits. Thislattermaterialwasformerlyinalaterchapter. Chapter4. RulesforDerivatives. Thischapternowincludesmore“intuitive,” thatis,geometricalandnumerical,sketchesofanumberofproofs,theformalproofs beinggiveninenrichmentsubsections. Thus,ageometricalsketchoftheproofforthe derivativeofaconstanttimesafunctionisgiven,andnumericalevidencefortheproof forthederivativeofthesumoftwofunctionsisgiven. Theformalproofsofthese, togetherwiththeproofofthederivativeoftheproduct,areinoptionalsubsections. More geometrical insight has been added to the chain rule, and more emphasis is putondeterminingunits. Themoredifficultproofsintheexponentialandlogarithm sectionhavebeenplacedinanenrichmentsubsection. Elasticityofdemandnowhas it’sownsection. Theintroductorymaterialonelasticityhasbeenrewrittentomake thetopicmoretransparent. Thelastsectiononapplicationsonrenewableresources hasbeenupdatedwithtimelynewmaterial. Chapter5. CurveSketchingandOptimization. Thischapterhasbeenexten- sivelyreorganized. Thesecondsectiononthesecondderivativenowcontainsonly materialspecifictoconcavityandthesecondderivativetestandismuchshorterand muchmoremanageable. Thematerialonadditionalcurvesketchingthatwasprevi- ouslyinthissectionhasbeengivenitsownsection,Section5.4. Limitsatinfinityare nowdiscussedinSection3,havingbeenmovedfromanearlierchapter. Itisinthis chapterthatthismaterialisactuallyused, soitseemsappropriatethatitbelocated here. The old section on optimization has been split into two sections, the first on absoluteextremaandthesecondonoptimizationandmathematicalmodeling.Anew sectiononthelogisticcurvehasbeencreatedfrommaterialfoundscatteredinvarious sections. Withitsownsection, newmaterialhasbeenaddedtogivethisimportant model its proper due (although instructors can omit this material without effecting theflowofthetext). Chapter6. Integration. Thesectiononsubstitutionhasbeenrefocusedtohave a more intuitive as opposed to formal approach and is now more easily accessible. To the third section, on distance traveled, more examples of Riemann sums have beenadded,andtakingthelimitasn→∞ispostponeduntilthenextsection. The sectiononthedefiniteintegralnowcontainssomepropertiesofintegralsthatwere notfoundinthelastedition. Thesectiononthefundamentaltheoremofcalculushas AnOverviewofThirdEditionChanges vii beenextensivelyrewritten,withadi(cid:1)fferentproofofthefundamentaltheoremgiven. x Wefirstshowthatthederivativeof f(t)dt isf(x)usingageometricargument a usingthenewpropert(cid:1)iesofintegralsthatwereincludedintheprevioussectionand b thenproceedtoprove f(t)dt =F(b)−F(a),whereF isanantiderivative. The a moreformalproofisgiveninanenrichmentsubsection. Finally,anewSection6.7 has been created to include the various applications of the integral that had been scatteredinprevioussections. Chapter7. AdditionalTopicsinIntegration. Theinteractiveillustrationsin thenumericalintegrationsectionyieldconsiderableinsightintothesubject. Students canmovefromonemethodtoanotherandchooseanynandseethegraphsandthe numericalanswersimmediately. Chapter 8. Functions of Several Variables. Graphing in several variables andvisualizingthegeometricinterpretationofpartialderivativesisalwaysdifficult. Thereareseveralinteractiveillustrationsinthischapterthatareextremelyhelpfulin thisregard. Chapter9. TheTrigonometricFunctions. Thischaptercoversanintroduction tothetrigonometricfunctions,includingdifferentiationandintegration. Chapter 10. Taylor Polynomials and Infinite Series. This chapter covers Taylor polynomials and infinite series. Sections 10.1, 10.2, and 10.7 constitute a subchapteronTaylorpolynomials. Section10.7iswrittensothatthereadercango fromSection10.2directlytoSection10.7. Chapter11. ProbabilityandCalculus. Thischapterisonprobability. Section 11.1isabriefreviewofdiscreteprobability. Section11.2considerscontinuousprob- abilitydensityfunctionsandSection11.3presentstheexpectedvalueandvariance ofthesefunctions. Section11.4coversthenormaldistribution. Chapter 12. Differential Equations. This chapter is a brief introduction to differentialequationsandincludesthetechniqueofseparationofvariables,approx- imate solutions using Euler’s method, some qualitative analysis, and mathematical problemsinvolvingtheharvestingofarenewablenaturalresource. This page intentionally left blank Preface Calculus: Applications and Technology is designed to be used in a one- or two- semestercalculuscourseaimedatstudentsmajoringinbusiness,management,eco- nomics,orthelifeorsocialsciences. Thetextiswrittenforastudentwithtwoyears of high school algebra. A wide range of topics is included, giving the instructor considerableflexibilityindesigningacourse. Since the text uses technology as a major tool, the reader is required to use a computer or a graphing calculator. The Student’s Suite CD with the text, gives all thedetails,inuserfriendlyterms,neededtousethetechnologyinconjunctionwith thetext. Thistext,togetherwiththeaccompanyingStudent’sSuiteCD,constitutesa completelyorganized,self-contained,user-friendlysetofmaterial,evenforstudents withoutanyknowledgeofcomputersorgraphingcalculators. Philosophy The writing of this text has been guided by four basic principles, all of which are consistentwiththecallbynationalmathematicsorganizationsforreformincalculus teachingandlearning. 1. TheRuleofFour: Whereappropriate,everytopicshouldbepresentedgraph- ically,numerically,algebraically,andverbally. 2. Technology: Incorporatetechnologyintothecalculusinstruction. 3. The Way ofArchimedes: Formal definitions and procedures should evolve fromtheinvestigationofpracticalproblems. 4. Teaching Method: Teach calculus using the investigative, exploratory ap- proach. TheRuleofFour. Byalwaysbringinggraphicalandnumerical,aswellasalge- braic,viewpointstobearoneachtopic,thetextpresentsaconceptualunderstanding ofthecalculusthatisdeepandusefulinaccommodatingdiverseapplications. Some- timesaproblemisdonealgebraically,thensupportednumericallyand/orgraphically (withagrapher). Sometimesaproblemisdonenumericallyand/orgraphically(with agrapher),thenconfirmedalgebraically. Othertimesaproblemisdonenumerically orgraphicallybecausethealgebraistootime-consumingorimpossible. Technology. Technology permits more time to be spent on concepts, problem solving,andapplications. Thetechnologyisusedtoassistthestudenttothinkabout ix
Description: