ebook img

C-H Activation for Asymmetric Synthesis PDF

286 Pages·2019·12.493 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview C-H Activation for Asymmetric Synthesis

C–HActivationforAsymmetricSynthesis C–H Activation for Asymmetric Synthesis Editedby FrançoiseColobert JoannaWencel-Delord Editors AllbookspublishedbyWiley-VCH arecarefullyproduced.Nevertheless, Prof.FrançoiseColobert authors,editors,andpublisherdonot UniversityofStrasbourg warranttheinformationcontainedin Labd’InnovationMoléculaireet thesebooks,includingthisbook,to Applications,UMR7042 befreeoferrors.Readersareadvised 25rueBecquerel tokeepinmindthatstatements,data, 67087Strasbourg illustrations,proceduraldetailsorother France itemsmayinadvertentlybeinaccurate. Dr.JoannaWencel-Delord LibraryofCongressCardNo.: UniversityofStrasbourg appliedfor Labd’InnovationMoléculaireet Applications,UMR7042 BritishLibraryCataloguing-in-Publication 25rueBecquerel Data 67087Strasbourg Acataloguerecordforthisbookis France availablefromtheBritishLibrary. Bibliographicinformationpublishedby CoverImage theDeutscheNationalbibliothek ©CoreDESIGN/Shutterstock TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>. ©2019Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-34340-9 ePDFISBN:978-3-527-81084-0 ePubISBN:978-3-527-81086-4 oBookISBN:978-3-527-81085-7 Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Foreword xi PartI AsymmetricActivationofC(sp3)—HBonds 1 PartI.A C(sp3)—HBondInsertionbyMetalCarbenoidsand Nitrenoids 2 1 StereoselectiveC—CBond-FormingReactionsThrough C(sp3)—HBondInsertionofMetalCarbenoids 3 AoifeM.Buckley,ThomasA.Brouder,AlanFord,andAnitaR.Maguire 1.1 Introduction 3 1.2 DiazoCompounds 4 1.3 MechanisticUnderstanding 5 1.4 Catalysts 7 1.4.1 Copper 7 1.4.1.1 BisoxazolineandSchiffBase 7 1.4.2 Rhodium 8 1.4.2.1 Rhodium(II)Carboxylates 9 1.4.2.2 Rhodium(II)Carboxamidates 10 1.4.2.3 Ortho-metalatedComplexes 11 1.4.3 IridiumandRuthenium 11 1.5 IntramolecularC(sp3)—HBondInsertion 11 1.5.1 Chemoselectivity 13 1.5.1.1 CatalystEffects 13 1.5.1.2 SubstrateEffects 14 1.5.2 Regioselectivity 16 1.5.2.1 FormationofThree-MemberedRings 17 1.5.2.2 FormationofFour-MemberedRings 18 1.5.2.3 FormationofFive-MemberedRings 20 1.5.2.4 FormationofSix-MemberedRings 20 1.5.3 Diastereoselectivity 23 1.5.3.1 SubstrateEffects 23 1.5.3.2 CatalystEffects 25 vi Contents 1.5.4 Enantioselectivity 25 1.6 IntermolecularC(sp3)—HBondInsertion 30 1.6.1 Chemoselectivity 30 1.6.1.1 DiazoCompounds 32 1.6.1.2 CatalystEffects 34 1.6.1.3 SubstrateFunctionalGroups 35 1.6.2 Regioselectivity 36 1.6.2.1 SubstrateEffects 36 1.6.2.2 CatalystEffects 38 1.6.2.3 DiazoCompoundEffects 39 1.6.3 Diastereoselectivity 39 1.6.3.1 SubstrateEffects 39 1.6.3.2 CatalystEffects 42 1.6.4 Enantioselectivity 43 1.7 Conclusion 45 References 45 2 StereoselectiveC—NBond-FormingReactionsThrough C(sp3)—HBondInsertionofMetalNitrenoids 51 PhilippeDauban,RomainRey-Rodriguez,andAliNasrallah 2.1 Introduction 51 2.2 HistoricalBackground 52 2.2.1 SeminalStudiesinCatalyticC(sp3)–HAmination 52 2.2.2 MechanisticandStereochemicalIssues 56 2.3 CatalyticStereoselectiveC(sp3)–HAminationReactionswith Iminoiodinanes 60 2.3.1 CatalyticIntermolecularEnantioselectiveReactions(ChiralityOnlyon theMetalComplex) 60 2.3.2 CatalyticIntramolecularEnantioselectiveReactions 63 2.3.3 CatalyticIntermolecularDiastereoselectiveReactions(Chiralityonthe MetalComplexandtheNitrenePrecursor) 66 2.4 CatalyticStereoselectiveC(sp3)–HAminationReactionswith Azides 67 2.4.1 TransitionMetal-CatalyzedC(sp3)–HAminationReactions 67 2.4.2 EnzymaticC(sp3)–HAminationReactions 68 2.5 CatalyticStereoselectiveC(sp3)–HAminationReactionswith N-(Sulfonyloxy)carbamates 70 2.6 Conclusion 72 References 72 PartI.B C(sp3)–HActivationasStereodiscriminantStep 77 3 EnantioselectiveIntra-andIntermolecularCouplings 79 QiaoqiaoTengandWei-LiangDuan 3.1 Introduction 79 Contents vii 3.2 EnantioselectiveIntramolecularCouplingsofAliphaticSubstrates 79 3.2.1 C–CCoupling 79 3.2.2 C–XCoupling 89 3.3 EnantioselectiveIntermolecularCouplingsofAliphaticSubstrates 90 3.3.1 PdCatalysis 91 3.3.2 RhCatalysis 102 3.3.3 IrCatalysis 102 3.4 Conclusion 104 References 105 4 Substrate-ControlledTransformation:Diastereoselective Functionalization 107 Sheng-YiYan,BinLiu,andBing-FengShi 4.1 Introduction 107 4.2 DiastereoselectiveFunctionalizationsofN-Phthaloyl-α-Amino Acids 108 4.2.1 Diastereoselectiveβ-C(sp3)–HFunctionalizationsof N-Phthaloyl-α-AminoAcids 108 4.2.1.1 BidentateDirectingGroup 108 4.2.1.2 MonodentateDirectingGroup 114 4.2.2 Diastereoselectiveγ-C(sp3)–HFunctionalizationofα-AminoAcid Derivatives 114 4.3 DiastereoselectiveC–HActivationControlledbyChiral Auxiliary 116 4.4 DiastereoselectiveC(sp3)–HFunctionalizationofConformationally RestrictedCyclicSubstrates 121 4.5 SummaryandConclusions 127 References 128 PartII StereoselectiveSynthesisImplyingActivationof C(sp2)—HBonds 131 5 PlanarChiralityviaC(sp2)–HActivationInvolvedin StereodiscriminantStep 133 QingGuandShu-LiYou 5.1 Introduction 133 5.2 DiastereoselectiveSynthesisofPlanarChiralFerrocenes 134 5.3 EnantioselectiveSynthesisofPlanarChiralFerrocenes 134 5.3.1 Pd(II)-CatalyzedDirectC—HBondFunctionalization 134 5.3.2 Pd(0)-CatalyzedDirectC—HBondFunctionalization 140 5.3.3 Ir/Rh-CatalyzedDirectC—HBondFunctionalization 144 5.3.4 Au/Pt-CatalyzedDirectC—HBondFunctionalization 146 5.4 Conclusion 147 References 148 viii Contents 6 AxialChiralityviaC(sp2)–HActivationInvolvedin StereodiscriminantStep 151 QuentinDherbassy,JoannaWencel-Delord,andFrançoiseColobert 6.1 Introduction 151 6.2 AsymmetricCouplingofTwoArenesbyOxidativeDimerization 152 6.2.1 Copper-CatalyzedReactions 153 6.2.2 Vanadium-CatalyzedReactions 154 6.2.3 Iron-CatalyzedReactions 155 6.2.4 ApplicationintheSynthesisofNaturalProducts 155 6.2.5 Conclusion 156 6.3 StereoselectiveC–HFunctionalizationofProchiralorRacemic Biaryls 158 6.3.1 AsymmetricC–HAlkylationofNaphthylpyridines 158 6.3.2 DiastereoselectiveC–HFunctionalizationUsingaChiralDirecting Group 159 6.3.2.1 SulfinylasChiralDirectingGroup 159 6.3.2.2 PhosphatesasChiralDirectingGroup 162 6.3.3 EnantioselectiveC–HFunctionalizationofRacemicBiaryl 163 6.3.4 StereoselectiveC–HFunctionalizationUsingaTransientChiral DirectingGroup 165 6.3.5 Conclusion 167 6.4 AtroposelectiveCross-CouplingofTwoMoieties 167 6.4.1 Pd-CatalyzedC–HArylationofThiopheneDerivatives 167 6.4.2 Pd-CatalyzedC–HArylationofBiarylSulfoxides 169 6.4.3 Rh-CatalyzedC–HArylationofDiazonaphthoquinones 171 6.4.4 Conclusion 172 6.5 GeneralConclusion 172 References 172 7 CentralChiralityviaAsymmetricC(sp2)–HActivationImplying DesymmetrizationandKineticResolution 175 SoufyanJerhaoui,FrançoiseColobert,andJoannaWencel-Delord 7.1 SynthesisofC-StereogenicMoleculesviaC(sp2)–H Functionalization 175 7.1.1 Desymmetrization 175 7.1.2 KineticResolution 182 7.2 SynthesisofP-CentralChiralMoleculesviaC(sp2)–H Functionalization 183 7.3 SynthesisofChiralOrganosiliconMoleculesviaC(sp2)–H Functionalization 187 7.4 SynthesisofS-ChiralMoleculesviaC(sp2)–HFunctionalization 189 7.5 Conclusions 190 References 191 Contents ix 8 Non-stereoselectiveC(sp2)–HActivationFollowedbySelective FunctionalizationofMetallacyclicIntermediate 193 XiaohongChen,XueGong,BoWang,andGuoyongSong 8.1 Introduction 193 8.2 IntramolecularCouplings 194 8.2.1 PalladiumandNickelCatalysis 194 8.2.2 RhodiumCatalysis 196 8.2.3 IridiumCatalysis 200 8.2.4 EnantioselectiveHydroacylation 203 8.3 IntermolecularCouplings 210 8.3.1 RhodiumCatalysis 210 8.3.2 IridiumCatalysis 219 8.3.3 OtherMetalCatalysis 226 8.4 Conclusion 231 Acknowledgments 231 References 231 9 DiastereoselectiveFormationofAlkenesThroughC(sp2)—H BondActivation 239 ParthasarathyGandeepanandLutzAckermann 9.1 Introduction 239 9.2 C–HActivationwithAlkenes 241 9.2.1 NondirectedC–HAlkenylation 241 9.2.2 DirectedC–HAlkenylation 244 9.3 C–HActivationwithAlkenyl(Pseudo)halides 250 9.4 Hydroarylation 252 9.4.1 HydroarylationofAlkynes 252 9.4.2 HydroarylationofAllenes 257 9.5 Hydroacylation 261 9.5.1 HydroacylationofAlkynes 261 9.5.2 HydroacylationofAllenes 263 9.6 Conclusion 264 References 265 Index 275 xi Foreword The ability of metals to cleave and functionalize strong C—H bonds was discovered in the late nineteenth century. Since then, major conceptual and methodological breakthrough has been accomplished using transition metal catalysts,andtheinterestforthisfieldhasexponentiallygrownfromthebegin- ning of the current century. Nowadays, a wide variety of catalytic methods are availabletoactivateandfunctionalizedifferenttypesofC—Hbondsinahighly chemo- and site-selective manner. Whereas these aspects are still progressing, stereoselectivityhasgainedincreasingmomentumandiscurrentlylyingatthe forefrontofthefield. This book, written by specialists of the topic, presents stereoselective C–H functionalization with a broad coverage, from outer-sphere to inner-sphere C—Hbondactivationandfromthecontrolofolefingeometrytotheinduction of point, planar, and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C–H activation or in a different elementary step arediscussed.Anotherstrikingfeatureappearingintheenclosedchaptersisthe diversityofstereogenicelementsthatcannowbeconstructedbyC–Hactivation methods: single or multiple stereogenic centers, metallocenes with planar chirality, and biaryl stereogenic axes are all accessible through stereoselective C–H functionalization. Moreover, the span of enantioselective reactions has greatly expanded in recent years and now includes almost all facets: desym- metrization of enantiotopic aryl or alkyl groups; classic, parallel, or dynamic kinetic resolution; activation of enantiotopic secondary C—H bonds; atrops- elective cross-coupling; functionalization of pro-atropisomeric systems; etc. These reactions are increasingly applied to the synthesis of complex molecules suchasactivepharmaceuticalingredientsandnaturalproducts,andnumerous examplesareprovidedalongthechapters. OnecaneasilypredictthatstereoselectiveC—Hbondfunctionalization,which employs readily available precursors, will become a major tool to make chiral moleculesforavarietyofapplications,includingattheindustrialscale.Thisbook willthereforeconstituteaninvaluablesupporttoguidebothacademicandindus- trialresearchersthroughthesedevelopments. 21December2018 OlivierBaudoin UniversityofBasel,Switzerland 1 PartI AsymmetricActivationofC(sp3)—HBonds

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.