ebook img

Building a Data Warehouse with Examples in SQL Server PDF

541 Pages·2007·12.12 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Building a Data Warehouse with Examples in SQL Server

cyan yeLLOW MaGenTa BLack PanTOne 123 c BOOks fOR PROfessIOnaLs By PROfessIOnaLs® The eXPeRT’s VOIce® In sQL seRVeR Companion eBook Available Building a Data Warehouse: With Examples in SQL Server WB iu t Dear Reader, h i This book contains essential topics of data warehousing that everyone embarking El on a data warehousing journey will need to understand in order to build a data xd warehouse. It covers dimensional modeling, data extraction from source systems, a Building a i dimension and fact table population, data quality, and database design. It also m n explains practical data warehousing applications such as business intelligence, p analytic applications, and customer relationship management. All in all, the g l book covers the whole spectrum of data warehousing from start to finish. e I wrote this book to help people with a basic knowledge of database systems s Data Warehouse who want to take their first step into data warehousing. People who are familiar a i with databases such as DBAs and developers who have never built a data ware- n house will benefit the most from this book. IT students and self-learners will D S also benefit. In addition, BI and data warehousing professionals will be interested in checking out the practical examples, code, techniques, and architectures Q a described in the book. L Throughout this book, we will be building a data warehouse using the t S Amadeus Entertainment case study, an entertainment retailer specializing in a music, films, and audio books. We will use Microsoft SQL Server 2005 and 2008 e With Examples in SQL Server to build the data warehouse and BI applications. You will gain experience designing r vW and building various components of a data warehouse, including the architecture, e data model, physical databases (using SQL Server), ETL (using SSIS), BI reports r (using SSRS), OLAP cubes (using SSAS), and data mining (using SSAS). a I wish you great success in your data warehousing journey. r Sincerely, e Vincent Rainardi h o RELatED titLES u Companion eBook s e See last page for details on $10 eBook version R Vincent Rainardi ISBN-13: 978-1-59059-931-0 a ISBN-10: 1-59059-931-4 in SOURCE CODE ONLINE 90000 a www.apress.com rd i Shelve in Microsoft: SQL Server User level: Intermediate–Advanced 9 781590 599310 this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY (1.0625 INCH BULK -- 544 pages -- 50# Thor) 9314fmfinal.qxd 11/15/07 1:37 PM Page i Building a Data Warehouse With Examples in SQL Server Vincent Rainardi 9314fmfinal.qxd 11/15/07 1:37 PM Page ii Building a Data Warehouse: With Examples in SQL Server Copyright © 2008 by Vincent Rainardi All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. ISBN-13 (pbk): 978-1-59059-931-0 ISBN-10 (pbk): 1-59059-931-4 ISBN-13 (electronic): 978-1-4302-0527-2 ISBN-10 (electronic): 1-4302-0527-X Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. Lead Editor: Jeffrey Pepper Technical Reviewers: Bill Hamilton and Asif Sayed Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick, JasonGilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, BenRenow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh Senior Project Manager: Tracy Brown Collins Copy Editor: Kim Wimpsett Associate Production Director: Kari Brooks-Copony Production Editor: Kelly Winquist Compositor: Linda Weidemann, Wolf Creek Press Proofreader: Linda Marousek Indexer: Ron Strauss Artist: April Milne Cover Designer: Kurt Krames Manufacturing Director: Tom Debolski Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail [email protected], orvisit http://www.springeronline.com. For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail [email protected], or visit http:// www.apress.com. The information in this book is distributed on an “as is” basis, without warranty. Although every pre- caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work. The source code for this book is available to readers at http://www.apress.com. 9314fmfinal.qxd 11/15/07 1:37 PM Page iii For my lovely wife,Ivana. 9314fmfinal.qxd 11/15/07 1:37 PM Page iv 9314fmfinal.qxd 11/15/07 1:37 PM Page v Contents at a Glance About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv nCHAPTER 1 Introduction to Data Warehousing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 nCHAPTER 2 Data Warehouse Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 nCHAPTER 3 Data Warehouse Development Methodology. . . . . . . . . . . . . . . . . . . . 49 nCHAPTER 4 Functional and Nonfunctional Requirements. . . . . . . . . . . . . . . . . . . . 61 nCHAPTER 5 Data Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 nCHAPTER 6 Physical Database Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 nCHAPTER 7 Data Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 nCHAPTER 8 Populating the Data Warehouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 nCHAPTER 9 Assuring Data Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 nCHAPTER 10 Metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 nCHAPTER 11 Building Reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 nCHAPTER 12 Multidimensional Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 nCHAPTER 13 Using Data Warehouse for Business Intelligence. . . . . . . . . . . . . . . 411 nCHAPTER 14 Using Data Warehouse for Customer Relationship Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 nCHAPTER 15 Other Data Warehouse Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 nCHAPTER 16 Testing Your Data Warehouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 nCHAPTER 17 Data Warehouse Administration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 nAPPENDIX Normalization Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 nINDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 v 9314fmfinal.qxd 11/15/07 1:37 PM Page vi 9314fmfinal.qxd 11/15/07 1:37 PM Page vii Contents About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv nCHAPTER 1 Introduction to Data Warehousing. . . . . . . . . . . . . . . . . . . . . . . . . . 1 What Is a Data Warehouse?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Retrieves Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Consolidates Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Periodically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Dimensional Data Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Normalized Data Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Business Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Other Analytical Activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Updated in Batches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Other Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Data Warehousing Today. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Business Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Customer Relationship Management. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Data Mining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Master Data Management (MDM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Customer Data Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Future Trends in Data Warehousing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Unstructured Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Service-Oriented Architecture (SOA) . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Real-Time Data Warehouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 vii 9314fmfinal.qxd 11/15/07 1:37 PM Page viii viii nCONTENTS nCHAPTER 2 Data Warehouse Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Data Flow Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Single DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 NDS + DDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ODS + DDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Federated Data Warehouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 System Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 nCHAPTER 3 Data Warehouse Development Methodology. . . . . . . . . . . . . . 49 Waterfall Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Iterative Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 nCHAPTER 4 Functional and Nonfunctional Requirements . . . . . . . . . . . . . 61 Identifying Business Areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Understanding Business Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Defining Functional Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Defining Nonfunctional Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Conducting a Data Feasibility Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 nCHAPTER 5 Data Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Designing the Dimensional Data Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Dimension Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Date Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Slowly Changing Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Product,Customer,and Store Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . 83 Subscription Sales Data Mart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Supplier Performance Data Mart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 CRM Data Marts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Data Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Source System Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Designing the Normalized Data Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Description:
Building a Data Warehouse: With Examples in SQL Server The supplementary material (available on the book's download page on the Apress
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.