ebook img

Boundary Element Topics: Proceedings of the Final Conference of the Priority Research Programme Boundary Element Methods 1989–1995 of the German Research Foundation October 2–4, 1995 in Stuttgart PDF

505 Pages·1997·15.345 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Boundary Element Topics: Proceedings of the Final Conference of the Priority Research Programme Boundary Element Methods 1989–1995 of the German Research Foundation October 2–4, 1995 in Stuttgart

Boundary Element Topics Springer Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapur Tokyo Wolfgang L. Wendland (Editor) Boundary Element Topics Proceedings of the Final Conference of the Priority Research Programme Boundary Element Methods 1989-1995 of the German Research Foundation October 2-4, 1995 in Stuttgart With 151 Figures , Springer Prof. Dr.-Ing. Wolfgang L. Wendland UniversiUit Stuttgart Mathematisches Institut A Pfaffenwaldring 57 0-70569 Stuttgart / Germany ISBN-13: 978-3-642-64554-9 e-ISBN-13: 978-3-642-60791-2 DOl: 10.1007/978-3-642-60791-2 CIP data appl ied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Boundary element topics: proceedings of the Final Conference of the Priority Research Programme Boundary Element Methods 1989 - 1995 of the German Research Foundation. October 2 -4, 1995 in Stuttgart / Wolfgang L. Wendland (ed.). - Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Milan; Paris; Santa Gara ; Singapur ; Tokyo: Springer, 1998 ISBN-13: 978-3-642-64554-9 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse ofillustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. © Springer-Verlag 8erlin Heidelberg 1997 Softcover reprint of the hardcover 1st edition 1997 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publisher cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature. Typesetting: camera ready by author Cover: Design& Production, Heidelberg SPIN: 1051767 61/3020-543210 List of Contributors Dr. H. Andra Karlsruhe University, Institute of Solid Mechanics, Kaiserstrai3e 12, Box 6980, 76131 Karlsruhe, Germany. Prof. Dr. H. Antes Technical University of Brunswick, Institute for Applied Mechanics, Spielmannstr. 11, 38106 Brunswick, Germany. Dr. D. Berthold Technical University of Chemnitz-Zwickau, Faculty of Mathematics, 09107 Chemnitz, Germany. Dipl.-Math. U. Brink University of Hanover, Institute for Structural and Computational Mechanics, Appelstr. 9A, 30167 Hanover, Germany. Prof. Dr. W. Dahmen RWTH Aachen, Institute of Geometry and Practical Mathematics, Templergraben 55, 52062 Aachen, Germany. Prof. Dr.-Ing. L. Gaul University of Stuttgart, Institute A of Mechanics, Pfaffenwaldring 9, 70550 Stuttgart, Germany. Dr.-Ing. C. Haack Technical University Hamburg-Harburg, Ocean Engineering Section II, Eii3endorfer Str. 42,21073 Hamburg, Germany. Dr. G. Haase Johannes Kepler University Linz, Institute of Mathematics, Altenberger Str. 69, A 4040 Linz, Austria. Prof. Dr. W. Hackbusch Christian-Albrechts-University of Kiel, Lehrstuhl fUr Praktische Mathematik, Mathematisches Seminar, 24098 Kiel, Germany. Dr. T. Hartmann University of Hanover, Institute for Applied Mathematics, Welfengarten 1, 30167 Hanover, Germany. Dr. B. Heise Johannes Kepler University Linz, Institute of Mathematics, Altenberger Str. 69, A 4040 Linz, Austria. VI List of Contributors Dr. R. Hinder TH Darmstadt, Department of Mathematics, SchloBgartenstr. 7, 64289 Darmstadt, Germany. Dr. M. Jager Technical University of Brunswick, Institute for Applied Mechanics, Spielmannstr. 11, 38106 Brunswick, Germany. Prof. Dr. L. Jentsch Technical University of Chemnitz-Zwickau, Faculty of Mathematics, 09107 Chemnitz, Germany. Prof. Dr. K. Kalik University of Stuttgart, Mathematical Institute A, Pfaffenwaldring 57, 70569 Stuttgart, Germany. Dipl.-Math. B. Kleemann Berlin Institute of Optics (BIFO), Rudower Chaussee 5, 12484 Berlin, Germany. Dr. M. Kreienmeyer University of Hanover, Institute for Structural and Computational Mechanics, Appelstr. 9A, 30167 Hanover, Germany. Prof. Dr.-Ing. G. Kuhn University of Erlangen-Niirnberg, Lehrstuhl fUr Technische Mechanik, Box 3429, 91022 Erlangen, Germany. Dipl.-Math. M. Kuhn Johannes Kepler University Linz, Institute of Mathematics, Altenberger Str. 69, A 4040 Linz, Austria. Dr. C. Lage Christian-Albrechts-University of Kiel, Lehrstuhl fUr Praktische Mathematik, Mathematisches Seminar, 24098 Kiel, Germany. Prof. Dr. U. Langer Johannes Kepler University Linz, Institute of Mathematics, Altenberger Str. 69, A 4040 Linz, Austria. o. Prof. Dr.-Ing. Mahrenholtz Technical University Hamburg-Harburg, Ocean Engineering Section II, EiBendorfer Str. 42, 21073 Hamburg, Germany. Dr. M. Maischak University of Hanover, Institute for Applied Mathematics, Welfengarten 1, 30167 Hanover, Germany. Prof. Dr. E. Meister TH Darmstadt, Department of Mathematics, SchloBgartenstr. 7, 64289 Darmstadt, Germany. List of Contributors VII Dr. D. Mirschinka Technical University of Chemnitz-Zwickau, Faculty of Mathematics, 09107 Chemnitz, Germany. Dipl.-Ing. P. Partheymiiller University of Erlangen-Nurnberg, Lehrstuhl fUr Technische Mechanik, Box 3429, 91022 Erlangen, Germany. Prof. Dr. S. ProBdorf Weierstrass Institute of Applied Analysis and Stochastics (WIAS), Mohrenstr. 39, 10117 Berlin, Germany. Dipl.-Math. R. Quatember University of Stuttgart, Mathematical Institute A, Pfaffenwaldring 57, 70569 Stuttgart, Germany. Dr. A. Rottgermann University of Stuttgart, Institut of Aerodynamics and Gasdynamics, Pfaffenwaldring 21, 70569 Stuttgart, Germany. Prof. Dr. A.-M. Sandig University of Stuttgart, Mathematical Institute A, Pfaffenwaldring 57, 70569 Stuttgart, Germany. Dr. S. Sauter Christian-Albrechts-University of Kiel, Lehrstuhl fur Praktische Mathematik, Mathematisches Seminar, 24098 Kiel, Germany. Dr.-Ing. M. Schanz Technical University of Brunswick, Institute for Applied Mechanics, Spielmannstr. 11, 38106 Brunswick, Germany. Dr.-Ing. V. Schlegel Technical University Hamburg-Harburg, Ocean Engineering Section II, Eif3endorfer Str. 42, 21073 Hamburg, Germany. Prof. Dr. E. Schnack Karlsruhe University, Institute of Solid Mechanics, Kaiserstrafie 12, Box 6980, 76131 Karlsruhe, Germany. Dr. R. Schneider TH Darmstadt, Department of Mathematics, SchloBgartenstr. 7, 64289 Darmstadt, Germany. Dr. H. Schulz University of Stuttgart, Mathematical Institute A, Pfaffenwaldring 57, 70569 Stuttgart, Germany. Prof. Dr. B. Silbermann Technical University of Chemnitz-Zwickau, Faculty of Mathematics, 09107 Chemnitz, Germany. VIII List of Contributors Prof. Dr. E. Stein University of Hanover, Institute for Structural and Computational Mechanics, Appelstr. 9A, 30167 Hanover, Germany. Dr. O. Steinbach University of Stuttgart, Mathematical Institute A, Pfaffenwaldring 57, 70569 Stuttgart, Germany. Prof. Dr. E. P. Stephan University of Hanover, Institute for Applied Mathematics, Welfengarten 1, 30167 Hanover, Germany. Dr. Sz. Szikrai Karlsruhe University, Institute of Solid Mechanics, KaiserstraBe 12, Box 6980, 76131 Karlsruhe, Germany. Dr. G. Trondle Technical University of Brunswick, Institute for Applied Mechanics, Spielmannstr. 11, 38106 Brunswick, Germany. Dr. K. Tiirke Karlsruhe University, Institute of Solid Mechanics, KaiserstraBe 12, Box 6980, 76131 Karlsruhe, Germany. Prof. Dr. S. Wagner University of Stuttgart, Institut of Aerodynamics and Gasdynamics, Pfaffenwaldring 21, 70569 Stuttgart, Germany. Prof. Dr. W. L. Wendland University of Stuttgart, Mathematical Institute A, Pfaffenwaldring 57, 70569 Stuttgart, Germany. Dipl.-Ing. W. Wenzel University of Stuttgart, Institute A of Mechanics, Pf(iffenwaldring 9, 70550 Stuttgart, Germany. Prof. Dr. B. Zastrau University of Wuppertal, Institute of Mechanics, Pauluskirchstr. 7, 42285 Wuppertal, Germany. Table of Contents Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Efficient Calculation of Acoustic Fields by Boundary Element Method G. Trondle, M. Jager, and H. Antes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 Introduction................................................. 9 2 Acoustic problems in frequency domain. . . . . . . . . . . . . . . . . . . . . . . .. 10 3 Multigrid solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 3.1 Operator splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 4 Adaptive mesh refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 4.1 Error indicator .......................................... 18 4.2 Refinement strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 5 Acoustic problems in time domain ............................. 21 6 Analysis of different boundary element methodologies. . . . . . . . . . . .. 22 6.1 Comparison of Point Collocation and Galerkin Method. . . . . .. 23 6.2 New BE realizations of Morino's modified Kirchhoff's equation 25 7 Adaptive meshes for moving noise sources. . . . . . . . . . . . . . . . . . . . . .. 26 7.1 An Effective but Simple Local Error Indicator. . . . . . . . . . . . . .. 27 7.2 Strategy For Refining and Re-Coarsening Grids Creating a "Moving" Mesh. . . . . .. . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . .. 27 8 Conclusion.................................................. 28 A Boundary Element Formulation for Generalized Viscoelastic Solids in Time Domain M. Schanz, L. Gaul, W. Wenzel, and B. Zastrau . . . . . . . . . . . . . . . . . . .. 31 1 Introduction................................................. 31 2 Constitutive equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 3 Elastic BE-formulation ....................................... 35 4 Viscoelastic BE-formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38 5 Numerical example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39 5.1 3-d pressure bar ......................................... 40 5.2 Foundation slab on soil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43 6 Stability and numerical damping of the elastic solution ........... 44 7 Conclusions................................................. 49 X Table of Contents On the Efficient Realization of Sparse Matrix Techniques for Integral Equations with Focus on Panel Clustering, Cubature and Software Design Aspects W. Hackbusch, C. Lage, and S.A. Sauter. . . . . . . . . . . . . . . . . . . . . . . . . .. 51 1 Introduction................................................. 51 2 Setting and Preliminaries .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52 3 Cubature Techniques for the Approximation of Singular and Nearly Singular Surface Integrals Arising in BEM ...................... 55 3.1 Cubature Techniques for the Collocation Method. . . . . . . . . . .. 57 3.2 Cubature Techniques for the Galerkin Method. . . . . . . . . . . . . .. 58 4 The Panel Clustering Method ................................. 62 4.1 Kernel Expansions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62 4.2 The Algorithm .......................................... 65 5 Error Analysis of the Panel Clustering Method .................. 66 5.1 Complexity of the Panel Clustering Algorithm. . . . . . . . . . . . . .. 67 6 Software Design Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 Bimetal Problems L. Jentsch and D. Mirschinka. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 77 1 Introduction................................................. 77 2 Two-dimensional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79 3 Three-dimensional Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82 4 Boundary integral operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86 5 Meshes and Spline spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94 6 Stability and error estimates for the Galerkin method ............ 95 Analysis of 3D Elastoplastic Notch and Crack Problems using Boundary Element Method G. Kuhn and P. Partheymiiller ................................... 99 1 Introduction................................................. 99 2 Basics of Continuum Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 2.1 Elasticity Theory ........................................ 100 2.2 Plasticity Theory ........................................ 101 3 Basics of Fracture Mechanics .................................. 102 3.1 Linear Elastic Fracture Mechanics .......................... 102 3.2 Nonlinear Fracture Mechanics ............................. 104 4 Boundary Element Method in Elastoplasticity ................... 104 4.1 Boundary Integral Formulations ........................... 104 4.2 Elastoplastic Solution .................................... 107 5 Crack Problems and Boundary Element Method ................. 109 5.1 Crack Modelling in the Boundary Element Method ........... 109 5.2 Evaluation of Fracture Mechanics Parameters ................ 115 6 Conclusion .................................................. 116

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.