ebook img

Boosting: foundations and algorithms PDF

544 Pages·2012·7.717 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Boosting: foundations and algorithms

Boosting FoundationsandAlgorithms AdaptiveComputationandMachineLearning ThomasDietterich,Editor ChristopherBishop,DavidHeckerman,MichaelJordan,andMichaelKearns,AssociateEditors Acompletelistofthebookspublishedinthisseriesmaybefoundatthebackofthebook. Boosting FoundationsandAlgorithms RobertE.Schapire YoavFreund TheMITPress Cambridge,Massachusetts London,England ©2012MassachusettsInstituteofTechnology Allrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicormechanicalmeans (includingphotocopying,recording,orinformationstorageandretrieval)withoutpermissioninwritingfromthe publisher. Forinformationaboutspecialqualitydiscounts,[email protected] ThisbookwassetinTimesRomanbyWestchesterBookComposition. PrintedandboundintheUnitedStatesofAmerica. LibraryofCongressCataloging-in-PublicationData Schapire,RobertE. Boosting:foundationsandalgorithms/RobertE.SchapireandYoavFreund. p. cm.—(Adaptivecomputationandmachinelearningseries) Includesbibliographicalreferencesandindex. ISBN978-0-262-01718-3(hardcover:alk.paper) 1.Boosting(Algorithms) 2.Supervisedlearning(Machinelearning) I.Freund,Yoav. II.Title. Q325.75.S33 2012 006.3'1—dc23 2011038972 10 9 8 7 6 5 4 3 2 1 Toourfamilies Contents SeriesForeword xi Preface xiii 1 IntroductionandOverview 1 1.1 ClassificationProblemsandMachineLearning 2 1.2 Boosting 4 1.3 ResistancetoOverfittingandtheMarginsTheory 14 1.4 FoundationsandAlgorithms 17 Summary 19 BibliographicNotes 19 Exercises 20 I COREANALYSIS 21 2 FoundationsofMachineLearning 23 2.1 ADirectApproachtoMachineLearning 24 2.2 GeneralMethodsofAnalysis 30 2.3 AFoundationfortheStudyofBoostingAlgorithms 43 Summary 49 BibliographicNotes 49 Exercises 50 3 UsingAdaBoosttoMinimizeTrainingError 53 3.1 ABoundonAdaBoost’sTrainingError 54 3.2 ASufficientConditionforWeakLearnability 56 3.3 RelationtoChernoffBounds 60 3.4 UsingandDesigningBaseLearningAlgorithms 62 Summary 70 BibliographicNotes 71 Exercises 71 viii Contents 4 DirectBoundsontheGeneralizationError 75 4.1 UsingVCTheorytoBoundtheGeneralizationError 75 4.2 Compression-BasedBounds 83 4.3 TheEquivalenceofStrongandWeakLearnability 86 Summary 88 BibliographicNotes 89 Exercises 89 5 TheMarginsExplanationforBoosting’sEffectiveness 93 5.1 MarginasaMeasureofConfidence 94 5.2 AMargins-BasedAnalysisoftheGeneralizationError 97 5.3 AnalysisBasedonRademacherComplexity 106 5.4 TheEffectofBoostingonMarginDistributions 111 5.5 Bias,Variance,andStability 117 5.6 RelationtoSupport-VectorMachines 122 5.7 PracticalApplicationsofMargins 128 Summary 132 BibliographicNotes 132 Exercises 134 II FUNDAMENTALPERSPECTIVES 139 6 GameTheory,OnlineLearning,andBoosting 141 6.1 GameTheory 142 6.2 LearninginRepeatedGamePlaying 145 6.3 OnlinePrediction 153 6.4 Boosting 157 6.5 Applicationtoa“Mind-Reading”Game 163 Summary 169 BibliographicNotes 169 Exercises 170 7 LossMinimizationandGeneralizationsofBoosting 175 7.1 AdaBoost’sLossFunction 177 7.2 CoordinateDescent 179 7.3 LossMinimizationCannotExplainGeneralization 184 7.4 FunctionalGradientDescent 188 7.5 LogisticRegressionandConditionalProbabilities 194 7.6 Regularization 202 7.7 ApplicationstoData-LimitedLearning 211 Summary 219 BibliographicNotes 219 Exercises 220 Contents ix 8 Boosting,ConvexOptimization,andInformationGeometry 227 8.1 IterativeProjectionAlgorithms 228 8.2 ProvingtheConvergenceofAdaBoost 243 8.3 UnificationwithLogisticRegression 252 8.4 ApplicationtoSpeciesDistributionModeling 255 Summary 260 BibliographicNotes 262 Exercises 263 III ALGORITHMICEXTENSIONS 269 9 UsingConfidence-RatedWeakPredictions 271 9.1 TheFramework 273 9.2 GeneralMethodsforAlgorithmDesign 275 9.3 LearningRule-Sets 287 9.4 AlternatingDecisionTrees 290 Summary 296 BibliographicNotes 297 Exercises 297 10 MulticlassClassificationProblems 303 10.1 ADirectExtensiontotheMulticlassCase 305 10.2 TheOne-against-AllReductionandMulti-labelClassification 310 10.3 ApplicationtoSemanticClassification 316 10.4 GeneralReductionsUsingOutputCodes 320 Summary 333 BibliographicNotes 333 Exercises 334 11 LearningtoRank 341 11.1 AFormalFrameworkforRankingProblems 342 11.2 ABoostingAlgorithmfortheRankingTask 345 11.3 MethodsforImprovingEfficiency 351 11.4 Multiclass,Multi-labelClassification 361 11.5 Applications 364 Summary 367 BibliographicNotes 369 Exercises 369

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.