ebook img

Biomechanics Optimization, Uncertainties and Reliability PDF

258 Pages·2017·15.013 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biomechanics Optimization, Uncertainties and Reliability

Biomechanics Reliability of Multiphysical Systems Set coordinated by Abdelkhalak El Hami Volume 5 Biomechanics Optimization, Uncertainties and Reliability Ghias Kharmanda Abdelkhalak El Hami First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.is te.co.uk www.wiley.com © ISTE Ltd 2017 The rights of Ghias Kharmanda and Abdelkhalak El Hami to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2016952066 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-025-6 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Chapter 1. Introduction to Structural Optimization . . . . . . . . . . . . . . . . 1 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. History of structural optimization . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. Sizing optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2. First works in sizing optimization . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3. Numerical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4. Shape optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.2. First works in shape optimization . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.3. Numerical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5. Topology optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.2. First works in topology optimization . . . . . . . . . . . . . . . . . . . . . 17 1.5.3. Numerical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Chapter 2. Integration of Structural Optimization into Biomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2. Integration of structural optimization into orthopedic prosthesis design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 vi Biomechanics 2.2.1. Structural optimization of the hip prosthesis . . . . . . . . . . . . . . . . . 24 2.2.2. Sizing optimization of a 3D intervertebral disk prosthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3. Integration of structural optimization into orthodontic prosthesis design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.3.1. Sizing optimization of a dental implant . . . . . . . . . . . . . . . . . . . . 47 2.3.2. Shape optimization of a mini-plate . . . . . . . . . . . . . . . . . . . . . . 49 2.4. Advanced integration of structural optimization into drilling surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.1. Case of treatment of a crack with a single hole . . . . . . . . . . . . . . . . 53 2.4.2. Case of treatment of a crack with two holes . . . . . . . . . . . . . . . . . 54 2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Chapter 3. Integration of Reliability into Structural Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2. Literature review of reliability-based optimization . . . . . . . . . . . . . . . . 58 3.3. Comparison between deterministic and reliability-based optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1. Deterministic optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.2. Reliability-based optimization . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4. Numerical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4.1. Description and modeling of the studied problem . . . . . . . . . . . . . . 64 3.4.2. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5. Approaches and strategies for reliability-based optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.1. Mono-level approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2. Double-level approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.3. Sequential decoupled approaches . . . . . . . . . . . . . . . . . . . . . . . 68 3.6. Two points of view for developments of reliability-based optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6.1. Point of view of “Reliability” . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6.2. Point of view of “Optimization” . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6.3. Method efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.7. Philosophy of integration of the concept of reliability into structural optimization groups . . . . . . . . . . . . . . . . . . . . . 72 3.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Chapter 4. Reliability-based Design Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2. Classic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Contents vii 4.2.1. Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.2. Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.3. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.4. Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3. Hybrid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.1. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3.2. Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.3. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.4. Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4. Improved hybrid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.1. Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.2. Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.3. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.4. Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5. Optimum safety factor method . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.5.1. Safety factor concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.5.2. Developments and optimality conditions . . . . . . . . . . . . . . . . . . . 92 4.5.3. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5.4. Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6. Safest point method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6.1. Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6.2. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.6.3. Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.7. Numerical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.7.1. RBDO of a hook: CM and HM . . . . . . . . . . . . . . . . . . . . . . . . 105 4.7.2. RBDO of a triangular plate: HM & IHM . . . . . . . . . . . . . . . . . . . 107 4.7.3. RBDO of a console beam (sandwich beam): HM and OSF . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.7.4. RBDO of an aircraft wing: HM & SP . . . . . . . . . . . . . . . . . . . . . 113 4.8. Classification of the methods developed . . . . . . . . . . . . . . . . . . . . . . 115 4.8.1. Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.8.2. Semi-numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.8.3. Comparison between the numerical- and semi-numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Chapter 5. Reliability-based Topology Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.2. Formulation and algorithm for the RBTO model . . . . . . . . . . . . . . . . . 122 5.2.1. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 viii Biomechanics 5.2.2. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2.3. Validation of the RBTO code developed . . . . . . . . . . . . . . . . . . . 125 5.3. Validation of the RBTO model . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.3.1. Analytical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.3.2. Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.4. Variability of the reliability index . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.4.1. Example 1: MBB beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.4.2. Example 2: Cantilever beam . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.4.3. Example 3: Cantilever beam with double loads . . . . . . . . . . . . . . . 136 5.4.4. Example 4: Cantilever beam with a transversal hole . . . . . . . . . . . . . 136 5.5. Numerical applications for the RBTO model . . . . . . . . . . . . . . . . . . . 137 5.5.1. Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.5.2. Modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.5.3. Fatigue analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.6. Two points of view for integration of reliability into topology optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.6.1. Point of view of “topology” . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.6.2. Point of view of “reliability” . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.6.3. Numerical applications for the two points of view . . . . . . . . . . . . . . 146 5.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Chapter 6. Integration of Reliability and Structural Optimization into Prosthesis Design . . . . . . . . . . . . . . . . . 153 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2. Prosthesis design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.3. Integration of topology optimization into prosthesis design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.3.1. Importance of topology optimization in prosthesis design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.3.2. Place of topology optimization in the prosthesis design chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.4. Integration of reliability and structural optimization into hip prosthesis design . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.4.1. Numerical application of the deterministic approach . . . . . . . . . . . . 158 6.4.2. Numerical application of the reliability-based approach . . . . . . . . . . 167 6.5. Integration of reliability and structural optimization into the design of mini-plate systems used to treat fractured mandibles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.5.1. Numerical application of the deterministic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.5.2. Numerical application of the reliability-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.