ebook img

Bio-Mimetic Swimmers in Incompressible Fluids Modeling, Well-Posedness, and Controllability PDF

177 Pages·3.116 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bio-Mimetic Swimmers in Incompressible Fluids Modeling, Well-Posedness, and Controllability

Lecture Notes in Mathematical Fluid Mechanics Alexander Khapalov Bio-Mimetic Swimmers in Incompressible Fluids Modeling, Well-Posedness, and Controllability Advances in Mathematical Fluid Mechanics Lecture Notes in Mathematical Fluid Mechanics Editor-in-Chief GiovanniPGaldi UniversityofPittsburgh,Pittsburgh,PA,USA SeriesEditors DidierBresch UniversitéSavoie-MontBlanc,LeBourgetduLac,France VolkerJohn WeierstrassInstitute,Berlin,Germany MatthiasHieber TechnischeUniversitätDarmstadt,Darmstadt,Germany IgorKukavica UniversityofSouthernCalifornia,LosAngles,CA,USA JamesRobinson UniversityofWarwick,Coventry,UK YoshihiroShibata WasedaUniversity,Tokyo,Japan Lecture Notes in Mathematical Fluid Mechanics as a subseries of “Advances in Mathematical Fluid Mechanics” is a forum for the publication of high quality monothematic work as well lectures on a new field or presentations of a new angle on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokesequationsandothersignificantviscousandinviscidfluidmodels. Inparticular,mathematicalaspectsofcomputationalmethodsandofapplicationsto scienceandengineeringarewelcomeasanimportantpartofthetheoryaswellas worksinrelatedareasofmathematicsthathaveadirectbearingonfluidmechanics. Moreinformationaboutthissubseriesathttp://www.springer.com/series/15480 Alexander Khapalov Bio-Mimetic Swimmers in Incompressible Fluids Modeling, Well-Posedness, and Controllability AlexanderKhapalov DepartmentofMathematicsandStatistics WashingtonStateUniversity Pullman,WA,USA ISSN2297-0320 ISSN2297-0339 (electronic) AdvancesinMathematicalFluidMechanics ISSN2510-1374 ISSN2510-1382 (electronic) LectureNotesinMathematicalFluidMechanics ISBN978-3-030-85284-9 ISBN978-3-030-85285-6 (eBook) https://doi.org/10.1007/978-3-030-85285-6 MathematicsSubjectClassification:35xx,76xx,93xx,49xx ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered companySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland ToLuke,Zoe,Dasha,Elena,Irina,andPeter Preface Theswimmingandflyingphenomenainnaturehavebeenasourceofgreatinterest andinspirationformanyresearchersinmathematicsandnaturalsciencesforalong time. The bibliography of formal publications in this area is very diverse in terms ofapproachesandmethodology,andcanbetracedasfarbackastotheworksofG. Borelliintheseventeenthcentury. Along these lines, the goal of this monograph is to present an original concise mathematical theory for so-called “bio-mimetic swimmers” in the framework of coupled system of partial differential equations (PDE) and ordinary differential equations(ODE).Thistheoryincludes: (cid:129) Anoriginalmodelingapproach(PartI), (cid:129) An associated well-posedness results for the proposed models for swimmers (PartII) (cid:129) A controllability theory, studying the steering potential of the proposed swim- mers(PartsIII–V). We will be focusing on the bio-mimetic swimmers (viewed as possible artificial mechanical devices) created to imitate the swimming locomotion of the existing “swimmers” in nature such as fish, eels, clams, aquatic frogs, turtles, sea snakes, andspermatozoa. Thistheorywasinitiallydevelopedintheseriesofworks[3,19–33],published in2005–2018,andinthismonograph,itisextendedtoaprincipallywiderclassof swimmingmodelswithsignificantlyimprovedsteeringcapabilities. The proposed theory is based on the original “immerse body” modeling approach, introduced in [19] in 2005. More precisely, we model the interaction betweenaswimmerandanincompressiblefluidsurroundingitbymakinguseofa coupledsystemoftwosetsofpartialandordinarydifferentialequations: (cid:129) Afluid(Navier–Stokesornon-stationaryStokes)equationforthefluiddynamics (cid:129) Anordinarydifferentialequationforthepositionofaswimmerinthefluid Itisassumedthattheswimmer’sbodyconsistsoffinitelymanyelements,identified with the fluid they occupy, that are subsequently linked by the rotational and vii viii Preface structural forces, which are explicitly described and serve as the means to change thegeometricshapeoftheswimmer’sbody.Thesumofsuchforces,beinginternal to the swimmer at hand, is equal to zero, and hence, they cannot move its center ofmassinaspacecontainingnomedium.However,inanincompressiblefluid,the originalswimmer’sinternalforces,ingeneral,willchange,bothintheirmagnitude and direction, according to the instantaneous spatial orientation of the swimmer’s bodypartsandoftheseforces.Respectively,thesumoftheactualforcesthatwill act on the swimmer’s body parts in an incompressible fluid can become non-zero, whichwillresultintheswimmer’slocomotion(aself-propellingmotion). Acknowledgments The author’s research presented in this monograph was supported in part by the NSF Grants DMS-0504093 and DMS-10007981 and Simmons Foundation award number317297. The author wishes to express his gratitude to the Department of Mathematics at the University of Rome II “Tor Vergata” and to the Instituto Nazionale di Alta Matematica(Italy)forhospitalitythroughouthissabbaticalintheSpringsemester of2019duringwhichpartsofthismonographwerewritten. The author also wishes to thank the reviewers for their comments and sugges- tions. Pullman,WA,USA AlexanderKhapalov Fall2020–Winter2021 Contents 1 Introduction................................................................. 1 1.1 Modeling:MimickingtheNature.................................... 2 1.2 MathematicalApproachtoSwimmingModeling .................. 6 1.3 SwimmingControllability ........................................... 7 1.4 RelatedSelectedBibliography....................................... 8 PartI Modeling of Bio-Mimetic Swimmers in 2D and 3D IncompressibleFluids 2 Bio-MimeticFish-LikeSwimmersina2DIncompressible Fluid:EmpiricModeling .................................................. 15 2.1 Swimmer’sBodyasaCollectionofSeparateSets ................. 15 2.2 Bio-MimeticFish-andSnake-LikeSwimmers .................... 16 2.3 Swimmer’sInternalForces .......................................... 16 2.3.1 RotationalInternalForces.................................. 17 2.3.2 ElasticInternalForces...................................... 18 2.4 Swimmer’sGeometricControls..................................... 19 2.5 InternalForcesandConservationofMomenta ..................... 20 2.5.1 AboutSwimmerswithBodyPartsDifferentinMass..... 20 2.6 Fluid Equations: Non-stationary Stokes and Navier–StokesEquationsin2D ..................................... 21 2.7 AModelofa2DFish-LikeBio-MimeticSwimmer:The CaseofStokesEquations............................................ 22 2.8 AModelofa2DFish-LikeBio-MimeticSwimmer:The CaseofNavier–StokesEquations ................................... 24 3 Bio-MimeticAquaticFrog-andClam-LikeSwimmersina 2DFluid:EmpiricModeling .............................................. 25 3.1 ABio-MimeticAquaticFrog-LikeSwimmerina2D IncompressibleFluid................................................. 25 3.2 A Bio-Mimetic Clam-Like Swimmer in a 2D IncompressibleFluid................................................. 28 ix x Contents 4 Bio-Mimetic Swimmers in a 3D Incompressible Fluid: EmpiricModeling .......................................................... 31 4.1 RotationalForcesin3D.............................................. 31 4.2 AModelofa3DFish-LikeBio-MimeticSwimmer:The CaseofStokesEquations............................................ 33 4.3 A Bio-Mimetic Frog-Like Swimmer in a 3D IncompressibleFluid................................................. 34 4.4 A Bio-Mimetic Clam-Like Swimmer in a 3D IncompressibleFluid................................................. 36 PartII Well-PosednessofModelsforBio-MimeticSwimmersin 2Dand3DIncompressibleFluids 5 Well-Posednessof2Dor3DBio-MimeticSwimmers:The CaseofStokesEquations .................................................. 41 5.1 Notations.............................................................. 41 5.2 Swimmer’sBody..................................................... 42 5.3 Initial-andBoundary-ValueProblemSetup ........................ 45 5.3.1 EstimatesforInternalForces............................... 47 5.4 MainResult:ExistenceandUniquenessofSolutions.............. 48 5.5 ProofofTheorem5.1 ................................................ 49 5.5.1 PreliminaryResults:DecoupledEquationforz (t)’s..... 49 i 5.5.2 ThreeDecoupledSolutionMappingsfor(5.3.1).......... 52 5.5.3 ProofofTheorem5.1....................................... 56 6 Well-Posednessof2Dor3DBio-MimeticSwimmers.................. 59 6.1 ProblemSetupandMainResults.................................... 59 6.1.1 ProblemSetting............................................. 59 6.1.2 MainResults................................................ 60 6.2 ProofsoftheMainResults........................................... 60 6.2.1 SolutionMappingforDecoupledNavier–Stokes Equations.................................................... 61 6.2.2 PreliminaryResults......................................... 61 6.2.3 ContinuityofB .......................................... 63 NS 6.2.4 ProofofTheorems6.1and6.2............................. 68 PartIII MicromotionsandLocalControllabilityforBio-Mimetic Swimmersin2Dand3DIncompressibleFluids 7 LocalControllabilityof2Dand3DSwimmers:TheCaseof Non-stationaryStokesEquations......................................... 71 7.1 DefinitionsofControllabilityforBio-MimeticSwimmers......... 71 7.2 MainResults.......................................................... 73 7.2.1 MainResults................................................ 75

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.