Big Data Meets Telcos: A Proactive Caching Perspective Ejder Ba¸stu˘g(cid:5), Mehdi Bennis(cid:63), Engin Zeydan◦, Manhal Abdel Kader(cid:5), Alper Karatepe◦, Ahmet Salih Er◦, and M´erouane Debbah(cid:5),† (cid:5)LargeNetworksandSystemsGroup(LANEAS),CentraleSup´elec,Universit´eParis-Saclay,Gif-sur-Yvette,France (cid:63)CentreforWirelessCommunications,UniversityofOulu,Finland ◦AveaLabs,Istanbul,Turkey †MathematicalandAlgorithmicSciencesLab,HuaweiFranceR&D,Paris,France [email protected],[email protected].fi, {engin.zeydan,alper.karatepe,ahmetsalih.er}@avea.com.tr, [email protected]@gmail.com TheETSIWorkshop“FromResearchtoStandardization” May102016,SophiaAntipolis,FRANCE. L A N E A S Large Networks and Systems Group Introduction Motivation (cid:73) Mobile cellular networks are becoming increasingly complex [And+14] (cid:73) Classical deployment/optimization techniques and solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps (cid:73) This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data [BBD14] (cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety Based on these motivations, we focus on Caching at the edge + enable big data! In particular, our contributions: (cid:73) Collect users’ mobile traffic data from a telecom operator (cid:73) Characterize content popularity and size distributions (cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof users’ satisfaction and backhaul offloading [And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014), pp.1065–1082 [BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications Magazine52.8(Aug.2014),pp.82–89 2/19 Introduction Motivation (cid:73) Mobile cellular networks are becoming increasingly complex [And+14] (cid:73) Classical deployment/optimization techniques and solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps (cid:73) This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data [BBD14] (cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety Based on these motivations, we focus on Caching at the edge + enable big data! In particular, our contributions: (cid:73) Collect users’ mobile traffic data from a telecom operator (cid:73) Characterize content popularity and size distributions (cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof users’ satisfaction and backhaul offloading [And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014), pp.1065–1082 [BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications Magazine52.8(Aug.2014),pp.82–89 2/19 Introduction Motivation (cid:73) Mobile cellular networks are becoming increasingly complex [And+14] (cid:73) Classical deployment/optimization techniques and solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps (cid:73) This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data [BBD14] (cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety Based on these motivations, we focus on Caching at the edge + enable big data! In particular, our contributions: (cid:73) Collect users’ mobile traffic data from a telecom operator (cid:73) Characterize content popularity and size distributions (cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof users’ satisfaction and backhaul offloading [And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014), pp.1065–1082 [BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications Magazine52.8(Aug.2014),pp.82–89 2/19 Introduction Motivation (cid:73) Mobile cellular networks are becoming increasingly complex [And+14] (cid:73) Classical deployment/optimization techniques and solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps (cid:73) This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data [BBD14] (cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety Based on these motivations, we focus on Caching at the edge + enable big data! In particular, our contributions: (cid:73) Collect users’ mobile traffic data from a telecom operator (cid:73) Characterize content popularity and size distributions (cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof users’ satisfaction and backhaul offloading [And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014), pp.1065–1082 [BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications Magazine52.8(Aug.2014),pp.82–89 2/19 Introduction Motivation (cid:73) Mobile cellular networks are becoming increasingly complex [And+14] (cid:73) Classical deployment/optimization techniques and solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps (cid:73) This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data [BBD14] (cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety Based on these motivations, we focus on Caching at the edge + enable big data! In particular, our contributions: (cid:73) Collect users’ mobile traffic data from a telecom operator (cid:73) Characterize content popularity and size distributions (cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof users’ satisfaction and backhaul offloading [And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014), pp.1065–1082 [BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications Magazine52.8(Aug.2014),pp.82–89 2/19 Introduction Motivation (cid:73) Mobile cellular networks are becoming increasingly complex [And+14] (cid:73) Classical deployment/optimization techniques and solutions (i.e., cell densification, acquiring more spectrum, etc.) are cost-ineffective and thus seen as stopgaps (cid:73) This calls for development of novel approaches that leverage recent advances in storage/memory, context-awareness, edge/cloud computing, and falls into framework of big data [BBD14] (cid:73) The big data has its notorious 4V: velocity, voracity, volume and variety Based on these motivations, we focus on Caching at the edge + enable big data! In particular, our contributions: (cid:73) Collect users’ mobile traffic data from a telecom operator (cid:73) Characterize content popularity and size distributions (cid:73) Exploitmachinelearningtoolsandinvestigategainsofcachingintermsof users’ satisfaction and backhaul offloading [And+14] J.G.Andrewsetal.“WhatWill5GBe?” In:IEEEJournalonSelectedAreasinCommunications32.6(June2014), pp.1065–1082 [BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications Magazine52.8(Aug.2014),pp.82–89 2/19 Introduction SomeRelevantWorks (cid:73) Scaling laws for caching in content delivery networks [GPT12] (cid:73) FemtoCaching architecture [Gol+13] (cid:73) LivingOnTheEdge: Edge caching and content popularity learning aspects [BBD14] (cid:73) Deployment aspects of cache-enabled single-tier networks [Ba¸s+15] (cid:73) Coded caching gains in physical layer [ZE15] (cid:73) MDS and regenerating codes [BGL15][Ped+15] [GPT12] SavvasGitzenisetal.“AsymptoticLawsforJointContentReplicationandDeliveryinWirelessNetworks”. In:IEEE TransactionsonInformationTheory[Online]arXiv:1201.309559.12(Dec.2012),pp.2760–2776 [Gol+13] NeginGolrezaeietal.“Femtocachinganddevice-to-devicecollaboration:Anewarchitectureforwirelessvideodistribution”. In: IEEECommunicationsMagazine51.4(2013),pp.142–149 [BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications Magazine52.8(Aug.2014),pp.82–89 [Ba¸s+15] EjderBa¸stu˘getal.“Cache-enabledSmallCellNetworks:ModelingandTradeoffs”. In:EURASIPJournalonWireless CommunicationsandNetworking1(Feb.2015),p.41 [ZE15] JingjingZhangandPetrosElia.“FundamentalLimitsofCache-AidedWirelessBC:InterplayofCoded-CachingandCSIT Feedback”. In:[Online]arXiv:1511.03961(2015) [BGL15] ValerioBioglioetal.“OptimizingMDSCodesforCachingattheEdge”. In:[Online]arXiv:1508.05753(2015) [Ped+15] JesperPedersenetal.“RepairSchedulinginWirelessDistributedStoragewithD2DCommunication”. In:[Online] arXiv:1504.06231(2015) 3/19 Introduction SomeRelevantWorks (cid:73) Scaling laws for caching in content delivery networks [GPT12] (cid:73) FemtoCaching architecture [Gol+13] (cid:73) LivingOnTheEdge: Edge caching and content popularity learning aspects [BBD14] (cid:73) Deployment aspects of cache-enabled single-tier networks [Ba¸s+15] (cid:73) Coded caching gains in physical layer [ZE15] (cid:73) MDS and regenerating codes [BGL15][Ped+15] [GPT12] SavvasGitzenisetal.“AsymptoticLawsforJointContentReplicationandDeliveryinWirelessNetworks”. In:IEEE TransactionsonInformationTheory[Online]arXiv:1201.309559.12(Dec.2012),pp.2760–2776 [Gol+13] NeginGolrezaeietal.“Femtocachinganddevice-to-devicecollaboration:Anewarchitectureforwirelessvideodistribution”. In: IEEECommunicationsMagazine51.4(2013),pp.142–149 [BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications Magazine52.8(Aug.2014),pp.82–89 [Ba¸s+15] EjderBa¸stu˘getal.“Cache-enabledSmallCellNetworks:ModelingandTradeoffs”. In:EURASIPJournalonWireless CommunicationsandNetworking1(Feb.2015),p.41 [ZE15] JingjingZhangandPetrosElia.“FundamentalLimitsofCache-AidedWirelessBC:InterplayofCoded-CachingandCSIT Feedback”. In:[Online]arXiv:1511.03961(2015) [BGL15] ValerioBioglioetal.“OptimizingMDSCodesforCachingattheEdge”. In:[Online]arXiv:1508.05753(2015) [Ped+15] JesperPedersenetal.“RepairSchedulinginWirelessDistributedStoragewithD2DCommunication”. In:[Online] arXiv:1504.06231(2015) 3/19 Introduction SomeRelevantWorks (cid:73) Scaling laws for caching in content delivery networks [GPT12] (cid:73) FemtoCaching architecture [Gol+13] (cid:73) LivingOnTheEdge: Edge caching and content popularity learning aspects [BBD14] (cid:73) Deployment aspects of cache-enabled single-tier networks [Ba¸s+15] (cid:73) Coded caching gains in physical layer [ZE15] (cid:73) MDS and regenerating codes [BGL15][Ped+15] [GPT12] SavvasGitzenisetal.“AsymptoticLawsforJointContentReplicationandDeliveryinWirelessNetworks”. In:IEEE TransactionsonInformationTheory[Online]arXiv:1201.309559.12(Dec.2012),pp.2760–2776 [Gol+13] NeginGolrezaeietal.“Femtocachinganddevice-to-devicecollaboration:Anewarchitectureforwirelessvideodistribution”. In: IEEECommunicationsMagazine51.4(2013),pp.142–149 [BBD14] EjderBa¸stu˘getal.“LivingontheEdge:TheroleofProactiveCachingin5GWirelessNetworks”. In:IEEECommunications Magazine52.8(Aug.2014),pp.82–89 [Ba¸s+15] EjderBa¸stu˘getal.“Cache-enabledSmallCellNetworks:ModelingandTradeoffs”. In:EURASIPJournalonWireless CommunicationsandNetworking1(Feb.2015),p.41 [ZE15] JingjingZhangandPetrosElia.“FundamentalLimitsofCache-AidedWirelessBC:InterplayofCoded-CachingandCSIT Feedback”. In:[Online]arXiv:1511.03961(2015) [BGL15] ValerioBioglioetal.“OptimizingMDSCodesforCachingattheEdge”. In:[Online]arXiv:1508.05753(2015) [Ped+15] JesperPedersenetal.“RepairSchedulinginWirelessDistributedStoragewithD2DCommunication”. In:[Online] arXiv:1504.06231(2015) 3/19
Description: