ebook img

Big Data in ehealthcare: Challenges and Perspectives PDF

256 Pages·2019·22.508 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Big Data in ehealthcare: Challenges and Perspectives

Big Data in eHealthcare Challenges and Perspectives Big Data in eHealthcare Challenges and Perspectives Nandini Mukherjee Sarmistha Neogy Samiran Chattopadhyay CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20181122 International Standard Book Number-13: 978-0-8153-9440-2 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Mukherjee, Nandini, author. | Neogy, Sarmistha, author. | Chattopadhyay, Samiran, author. Title: Big data in eHealthcare : challenges and perspectives / Nandini Mukherjee, Sarmistha Neogy, Samiran Chattopadhyay. Description: Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019. | Includes bibliographical references and index. Identifiers: LCCN 2019011925| ISBN 9780815394402 (hardback : acid-free paper) | ISBN 9781351057790 (ebook) Subjects: LCSH: Medical informatics. | Medicine--Data processing. | Big data. | Data mining. Classification: LCC R858 .M85 2019 | DDC 610.285--dc23 LC record available at https://lccn.loc.gov/2019011925 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my daughter Shabnam and my husband Biman — Nandini Mukherjee To my daughter Roshni and my son-in-law Prince Bose — Sarmistha Neogy To my daughter Anwesha and my wife Matangini — Samiran Chattopadhyay Contents List of Figures xiii Preface xv Acknowledgements xvii Authors xix 1 Introduction 1 1.1 What Is eHealth? . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 eHealth Technologies . . . . . . . . . . . . . . . . . . . . . . 3 1.3 eHealth Applications . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Health Informatics . . . . . . . . . . . . . . . . . . . . 5 1.3.2 mHealth . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.3 Telehealth . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 eHealth and Big Data . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Issues and Challenges . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 11 References 12 2 Electronic Health Records 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Electronic Health Records . . . . . . . . . . . . . . . . . . . 14 2.3 EHR Standards . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 ISO 13606 . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 HL7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 OpenEHR . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Adoption of EHR Standards . . . . . . . . . . . . . . . . . . 30 2.5 Ontology-based Approaches . . . . . . . . . . . . . . . . . . . 32 2.5.1 Developing an Ontology . . . . . . . . . . . . . . . . . 33 2.5.2 Ontologies for EHR . . . . . . . . . . . . . . . . . . . 33 2.5.3 Ontologies in Healthcare . . . . . . . . . . . . . . . . . 34 2.6 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 35 vii viii Contents References 40 3 Big Data: From Hype to Action 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 What Is Big Data? . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Big Data Properties . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Why Is Big Data Important? . . . . . . . . . . . . . . . . . . 47 3.5 Big Data in the World . . . . . . . . . . . . . . . . . . . . . . 49 3.6 Big Data in Healthcare . . . . . . . . . . . . . . . . . . . . . 50 3.6.1 Is Health Data Big Data? . . . . . . . . . . . . . . . . 51 3.6.2 Big Data: Healthcare Providers . . . . . . . . . . . . . 52 3.7 Other Big Data Applications . . . . . . . . . . . . . . . . . . 54 3.7.1 Banking and Securities. . . . . . . . . . . . . . . . . . 55 3.7.2 Communications, Media, and Entertainment . . . . . 55 3.7.3 Manufacturing and Natural Resources . . . . . . . . . 56 3.7.4 Government . . . . . . . . . . . . . . . . . . . . . . . . 56 3.7.5 Transportation . . . . . . . . . . . . . . . . . . . . . . 56 3.7.6 Education . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.8 Securing Big Data . . . . . . . . . . . . . . . . . . . . . . . . 57 3.8.1 Security Considerations . . . . . . . . . . . . . . . . . 57 3.8.2 Security Requirements . . . . . . . . . . . . . . . . . . 58 3.8.3 Some Observations . . . . . . . . . . . . . . . . . . . . 59 3.9 Big Data Security Framework . . . . . . . . . . . . . . . . . 59 3.10 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 61 References 62 4 Acquisition of Big Health Data 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Wireless Body Area Network . . . . . . . . . . . . . . . . . . 66 4.2.1 BAN Design Aspects . . . . . . . . . . . . . . . . . . . 68 4.2.2 WBAN Sensors . . . . . . . . . . . . . . . . . . . . . . 70 4.2.3 Technologies for WBAN . . . . . . . . . . . . . . . . . 70 4.2.3.1 Bluetooth and Bluetooth LE . . . . . . . . . 70 4.2.3.2 ZigBee and WLAN . . . . . . . . . . . . . . 71 4.2.3.3 WBAN standard . . . . . . . . . . . . . . . . 71 4.2.4 Network Layer . . . . . . . . . . . . . . . . . . . . . . 73 4.2.5 Inter-WBAN Interference . . . . . . . . . . . . . . . . 74 4.3 Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 Social Network . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.5 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 83 References 84 Contents ix 5 Health Data Analytics 87 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . 90 5.2.1 Model of an ANN . . . . . . . . . . . . . . . . . . . . 90 5.2.2 Modes of ANN . . . . . . . . . . . . . . . . . . . . . . 92 5.2.3 Structure of ANNs . . . . . . . . . . . . . . . . . . . . 93 5.2.4 Training a Feedforward Neural Network . . . . . . . . 93 5.2.5 ANN in Medical Domain . . . . . . . . . . . . . . . . 96 5.2.6 Weakness of ANNs . . . . . . . . . . . . . . . . . . . . 97 5.3 Classification and Clustering . . . . . . . . . . . . . . . . . . 98 5.3.1 Clustering via K-Means . . . . . . . . . . . . . . . . . 99 5.3.2 Some Additional Remarks about K-Means . . . . . . . 100 5.4 Statistical Classifier: Bayesian and Naive Classification . . . 102 5.4.1 Experiments with Medical Data . . . . . . . . . . . . 104 5.4.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . 106 5.4.3 Clasical Indction of Decision Trees . . . . . . . . . . . 108 5.5 Association Rule Mining (ARM) . . . . . . . . . . . . . . . . 111 5.5.1 Simple Approach for Rule Discovery . . . . . . . . . . 112 5.5.2 Processing of Medical Data . . . . . . . . . . . . . . . 113 5.5.3 Association Rule Mining in Health Data . . . . . . . . 113 5.5.4 Issues with Association Rule Mining . . . . . . . . . . 114 5.6 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . 115 5.6.1 Time Series Regression Models . . . . . . . . . . . . . 116 5.6.2 Linear AR Time Series Models . . . . . . . . . . . . . 117 5.6.3 Application of Time Series . . . . . . . . . . . . . . . 120 5.7 Text Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.7.1 Term Frequency and Inverse Document Frequency . . 122 5.7.2 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . 123 5.8 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 124 References 126 6 Architecture and Computational Models for Big Data Pro- cessing 129 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.2 Performance Issues . . . . . . . . . . . . . . . . . . . . . . . 130 6.3 Parallel Architecture . . . . . . . . . . . . . . . . . . . . . . 135 6.3.1 Distributed Shared Memory . . . . . . . . . . . . . . . 137 6.3.2 Hierarchical Hybrid Architecture . . . . . . . . . . . . 138 6.3.3 Cluster Computing . . . . . . . . . . . . . . . . . . . . 138 6.3.4 Multicore Architecture . . . . . . . . . . . . . . . . . . 139 6.3.5 GPU Computing . . . . . . . . . . . . . . . . . . . . . 140 6.3.6 Recent Advances in Computer Architecture . . . . . . 141

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.