Big Data Analytics for Sensor-Network Collected Intelligence Big Data Analytics for Sensor-Network Collected Intelligence Edited by Hui-Huang Hsu Tamkang University, Taiwan Chuan-Yu Chang NationalYunlin University ofScience and Technology, Taiwan Ching-Hsien Hsu Chung Hua University, Taiwan Series Editor Fatos Xhafa Universitat Polite`cnica de Catalunya, Spain AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom #2017ElsevierInc.Allrightsreserved Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationabout thePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-809393-1 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:JoeHayton AcquisitionEditor:SonniniR.Yura EditorialProjectManager:AnaClaudiaA.Garcia ProductionProjectManager:PunithavathyGovindaradjane CoverDesigner:VictoriaPearson TypesetbySPiGlobal,India List of Contributors Ahmad Anbar The GeorgeWashingtonUniversity, Washington, DC, United States Haytham Assem IBM, Dublin, Ireland Christophe Blanchet CNRS IFB, Orsay, France Teodora S.Buda IBM, Dublin, Ireland JiannongCao The Hong Kong PolytechnicUniversity, Kowloon, Hong Kong Chuan-YuChang NationalYunlinUniversity of Science andTechnology, DouliuCity, Yunlin County, Taiwan JinjunChen University ofTechnology Sydney, Broadway, NSW,Australia Cen Chen Hunan University, Changsha, China Szu-Ta Chen NationalTaiwanUniversity HospitalYun-Lin Branch, Douliu City, Yunlin County, Taiwan KangChen Southern Illinois University, Carbondale,IL, United States ZixueCheng University ofAizu, Aizuwakamatsu,Japan Ceesde Laat University ofAmsterdam, Amsterdam, The Netherlands Yuri Demchenko University ofAmsterdam, Amsterdam, The Netherlands Mingxing Duan Hunan University, Changsha, China Tarek El-Ghazawi The GeorgeWashingtonUniversity, Washington, DC, United States WeiweiW. Fang BeijingKey Lab ofTransportation DataAnalysis and Mining, Beijing Jiaotong University, Beijing, China Edmond J. Golden III NationalInstituteofStandards and Technology, Gaithersburg,MD, UnitedStates Chu-Cheng Hsieh SliceTechnologies Inc.,San Mateo,CA, United States xiii xiv List of Contributors Ching-Hsien Hsu Chung HuaUniversity, Hsinchu,Taiwan Hui-Huang Hsu Tamkang University, Tamsui, Taiwan Qian Huang Southern Illinois University, Carbondale,IL, UnitedStates Tian-Hsiang Huang NationalSunYat-sen University, Kaohsiung,Taiwan Chih-Chieh Hung Tamkng University, NewTaipei City, Taiwan Pravin Kakar Institute for InfocommResearch, Agency for Science,Technology and Research (A*STAR), Singapore ShonaliKrishnaswamy Institute for InfocommResearch, Agency for Science,Technology and Research (A*STAR), Singapore Chung-Nan Lee NationalSunYat-sen University, Kaohsiung,Taiwan Kenli Li Hunan University, Changsha,China Keqin Li Hunan University, Changsha, China; State University of New York, New Paltz, NY, United States Xiao-Li Li Institute for InfocommResearch, Agency for Science,Technology and Research (A*STAR), Singapore QingyongY. Li Beijing Key Lab ofTransportation Data Analysis and Mining, Beijing Jiaotong University, Beijing, China Hai-NingLiang Xi’an Jiaotong-Liverpool University, Suzhou, China Chen Lin NationalYunlin University ofScience and Technology, Douliu City, Yunlin County,Taiwan Xuefeng Liu The Hong Kong PolytechnicUniversity, Kowloon, Hong Kong Ming Liu Beijing Key Lab ofTransportation Data Analysis and Mining, Beijing Jiaotong University, Beijing, China CharlesLoomis SixSq Sàrl,Geneva, Switzerland Chao Lu Southern Illinois University, Carbondale,IL, UnitedStates List of Contributors xv Ka L. Man Xi’anJiaotong-Liverpool University, Suzhou,China Martial Michel NationalInstituteofStandards and Technology, Gaithersburg,MD, UnitedStates Vijayakumar Nanjappan Xi’anJiaotong-Liverpool University, Suzhou,China Minh N. Nguyen Institutefor InfocommResearch, Agency for Science,Technology and Research(A*STAR), Singapore DeclanO’Sullivan TrinityCollege Dublin, Dublin, Ireland Phyo P. San Institutefor InfocommResearch, Agency for Science,Technology and Research(A*STAR), Singapore OlivierSerres The GeorgeWashingtonUniversity, Washington, DC, United States Kathiravan Srinivasan NationalIlan University, YilanCity, Yilan County,Taiwan Ming-Chun Tsai NationalSun Yat-sen University, Kaohsiung,Taiwan Fatih Turkmen University ofAmsterdam, Amsterdam, The Netherlands Wei Wang Xi’anJiaotong-Liverpool University, Suzhou,China Junbo Wang University ofAizu, Aizuwakamatsu,Japan YilangWu University ofAizu, Aizuwakamatsu,Japan Chen-Ming Wu NationalSun Yat-sen University, Kaohsiung,Taiwan Lei Xu IBM, Dublin, Ireland Chi Yang University ofTechnology Sydney, Broadway, NSW,Australia Jian-BoYang Institutefor InfocommResearch, Agency for Science,Technology and Research(A*STAR), Singapore ZhangduiD.Zhong BeijingKey Lab ofTransportation DataAnalysis and Mining, Beijing Jiaotong University, Beijing, China Preface Therearethreesourcesofinformationwecancollectabouttheenvironmentandthepeopleintheen- vironment:environmentalsensors,wearablesensors,andsocialnetworks.Throughintelligentanalysis ofthehugeamountofsensorydata,wecandevelopvarioussystemstoautomaticallydetectnaturaland man-madeevents.Moreover,thesystemscanalsotrytounderstandpeople’sbehaviorandeveninten- tion. Thus better servicescan be provided topeople inan unobtrusivemanner. Withtheadvancesinsensorandnetworkingtechnologies,wearenowabletocollectsensorydata easily. These sensory data can be stored and processed in the cloud. Nevertheless, how to properly utilize such a huge amount of data is another essential issue. We certainly hope that advanced ICT technologiescanhelpusperformintelligentanalysisonthesedataandprovidebetterservicestopeople automatically.Excitingnewsystemsandresearchresultshavebeendeveloped.Thisbookaimstoin- troducetheseambientintelligenceandInternetofThings(IoT)systems,whicharebasedonbigdata analytics ofcollected sensorydata. Thethemeofthisbookiscloselyrelatedtotwohottopics:theInternetofThingsandbigdataan- alytics.Systemsandtechnologiesintroducedinthebookcanbeusedassupplementarymaterialsfor coursesinvolvingthesetwotopics.Researchers,professionals,andpractitionersinrelatedfieldscan alsofindusefulinformationandtechnologiesfortheirwork.Therearefourpartsofthisbook:bigdata architectureandplatforms;bigdataprocessingandmanagement;bigdataanalyticsandservices;and big data intelligence and IoT systems. Each part includes threeor four chapters. Here we briefly in- troduce each of the 14 chapters. PartI:Big Data Architectureand Platforms 1. BigData:AClassificationof Acquisition and GenerationMethods Vijayakumar Nanjappan, Hai-NingLiang, Wei Wang, Ka L.Man Thischapterpointsoutthatitisverydifficulttostore,process,andanalyzehugeamountsofdata using conventional computingmethodologies and resources.The authorsclassify the data into digitalandanalog,environmentalandpersonal.Datatypesandformatsaswellasinputmechanisms arealsohighlighted.Thesewillhelpusunderstandtheactiveandpassivemethodsofdatacollection andproduction. 2. Cloud Computing Infrastructure for Data Intensive Applications Yuri Demchenko, Fatih Turkmen, Cees de Laat, Ching-Hsien Hsu, Christophe Blanchet, CharlesLoomis This chapter proposes acloud-based bigdata infrastructure(BDI). Thegeneral architecture and functionalcomponentsofBDIaredescribedindetail.BDIissupportedbythedefinitionofthebig data architecture framework (BDAF).Two case studiesin bioinformatics are illustrated inthe chapter to provide examples ofrequirements analysis and implementation. 3. Open Source PrivateCloud Platforms for Big Data MartialMichel, Olivier Serres, Ahmad Anbar, Edmond J.Golden III, Tarek El-Ghazawi Thischaptertellsusthatitisbeneficialtouseprivateclouds,especiallyopensourceclouds,for bigdata.Security,privacy,andcustomizationarethemajorconcerns.Thechapterintroducesthemost prominentopensourcecloudsinviewofbigdataprocessing.AcasestudyusinganOn-Premise PrivateCloudisalsopresentedtodemonstratetheimplementationofsuchanenvironment. xvii xviii Preface Part II: BigDataProcessing and Management 4. Efficient NonlinearRegression-Based Compression of BigSensing Data on Cloud ChiYang,Jinjun Chen Thischapterproposesacompressionmethodforbigsensingdatabasedonanonlinearregression model. It improves the effectiveness and efficiencyfor processing real-worldbigsensingdata. Regressiondesign, least squares, andtriangular transform are discussedin thischapter. It is demonstratedthat the model achieves significant storage and time performance gains over other compression models. 5. BigDataManagement onWireless Sensor Networks Chih-Chieh Hung, Chu-Cheng Hsieh This chapter gives anoverviewof data management issues andsolutionsin wireless sensor networks. There are two possible models:centralized and decentralized. Data management can becentralized for the benefit of computation,or decentralized for energysaving.Three major issues for data management in both models are introduced: storage, query processing, and data collection. Some case studies are also discussed. 6. Extreme Learning Machine and Its Applications in BigData Processing Cen Chen, Kenli Li,Mingxing Duan, Keqin Li Thischapterfirstreviewstheextremelearningmachine(ELM)theoryanditsvariants.Duetoits memory-residency and high space/time complexity,the traditional ELM cannot trainbigdata efficiently.Optimization strategiesare necessary tosolvethis problem. Thus, parallel ELM algorithms based on MapReduce andSpark are described.Finally,practical applications ofthe ELM for bigdata are also presented inthis chapter. Part III: BigData Analyticsand Services 7. Spatial BigData Analyticsfor Cellular Communication Systems JunboWang, Yilang Wu,Hui-Huang Hsu, Zixue Cheng This chapter surveys methodologies of spatial bigdata analytics andpossible applicationsto supportthecellularcommunication(CC)system.TheCCsystemprovidesthemostpopularwayto connect people. However,it stillfaceschallenges, such asunbalanced crowd communication behaviorandvideotransmissioncongestion.SpatialbigdataanalyticscanhelptheCCsystemto provide services with better quality ofservice (QoS).Challenging issues are highlighted inthis chapter. 8. Cognitive Applications and Their SupportingArchitecture for Smart Cities Haytham Assem, Lei Xu,Teodora S. Buda, Declan O’Sullivan This chapter proposes acognitivearchitecture to enable bigdata applicationswith sensory data for smart cities. It deals with organization, configuration, security,and optimization. This chapter also reviewsrelatedworkon location-based social networksand presentsa novel approachtodetecturbanpatterns,especiallyanomalies.Thisisessentialforbetterunderstanding ofhumanactivities and behaviors. 9. Deep Learning for Human Activity Recognition PhyoP. San, PravinKakar,Xiao-LiLi, Shonali Krishnaswamy, Jian-Bo Yang, Minh N. Nguyen This chapter presents a systematic feature learning method for the problem ofhumanactivity recognition(HAR). It adopts a deep convolutional neural network (CNN) toautomate feature learning from rawinputs.It isnotnecessary tohandcraft features inadvance.Sucha Preface xix unification offeature learning andclassification results inmutual enhancements.Thisis verified by comparing experimental results with several state-of-the-art techniques. 10. Neonatal Cry Analysisand Categorization SystemVia DirectedAcyclic Graph Support Vector Machine Szu-Ta Chen, Kathiravan Srinivasan,ChenLin, Chuan-Yu Chang This chapterintroduces a neonatal cry analysis andcategorizationsystem. From the cry of the newborn,the system can identifydifferent types offeelingssuch aspain,sleepiness, and hunger.Thesequential forwardfloatingselection (SFFS)algorithm isused tochoose the discriminative features.Theselectedfeaturesare then used toclassifythe neonatal cries by the directedacyclic graph supportvector machine (DAG-SVM). The system isusefulfor parentsandnursing staff. PartIV: BigDataIntelligence and IoT Systems 11. Smart Building Applications and InformationSystemHardware Co-Design Qian Huang,Chao Lu,Kang Chen This chapteremphasizes that acomprehensiveunderstandingofinformationsystem hardware isnecessary when designing efficient smart building applications. The necessityand importance ofapplication andhardware co-designare discussed inthis chapter. Acase study isalso givento show thatapplication and hardware co-design optimize the smart building design from asystem perspective. 12. Smart SensorNetworksfor Building Safety XuefengLiu, Jiannong Cao Thischapterpresentsthedesignandimplementationofeffectiveandenergy-efficientstructural health monitoring(SHM)algorithmsin resource-limited wireless sensornetworks(WSNs). Comparedtotraditionalwiredtransmission,WSNsarelowcostandeasytodeployforbuilding monitoring.DistributedversionsofSHMalgorithmscanhelpovercomethebandwidthlimitation. AWSN-Cloudsystem architecture isalso proposedfor future SHM. 13. The Internetof Things and Its Applications Chung-NanLee, Tian-Hsiang Huang, Chen-Ming Wu,Ming-Chun Tsai This chapterfirst comparestwolightweightprotocolsfor the Internet ofThings (IoT):MQ telemetrytransport(MQTT)and the constrained applicationprotocol (CoAP).Both protocols reducethe size of the packet andthe over-loading of the bandwidth,thus saving battery power and storage space.Themajor techniquesfor bigdataanalytics are then introduced. Finally, intelligent transportation systems and intelligent manufacturing systems are presented as examples. 14. Smart Railway Basedon the Internet ofThings Qingyong Y. Li,Zhangdui D.Zhong,MingLiu, Weiwei W. Fang This chapterdiscussesthe frameworkand technologies for a smart railway based on Internet ofThings (IoT) and bigdata. The architecture ofa smart railway, including the perception and action layer,the transferlayer, the data engine layer, andthe application layer, is presented first. Acase study on intelligent rail inspectionisthen introduced. This chapter showsthat asmart railway ispromisingin improvingtraditional railway systems. xx Preface ACKNOWLEDGMENTS Thisbookisapartofthebookseries“IntelligentData-CentricSystems.”Firstofall,wewouldliketo thanktheserieseditor,Prof.FatosXhafa,forhisencouragementandguidanceindevelopingthisbook. Wegratefullyacknowledgeallthecontributingauthorsofthechapters.Thisbookwouldnothavebeen possiblewithouttheirgreatefforts.WearealsoindebtedtoMs.AnaClaudiaGarcia,theeditorialpro- ject manager, and the whole production team at Elsevier for their continuous help in producing this book. Finally,we thank ourfamiliesfor their love and support. Hui-Huang Hsu, Chuan-YuChang,Ching-Hsien Hsu September 2016
Description: