ebook img

Biases in the inferred mass-to-light ratio of globular clusters: no need for variations in the stellar mass function PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biases in the inferred mass-to-light ratio of globular clusters: no need for variations in the stellar mass function

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed18February2015 (MNLaTEXstylefilev2.2) Biases in the inferred mass-to-light ratio of globular clusters: no need for variations in the stellar mass function 5 Rosemary L. Shanahan1 & Mark Gieles2 1 0 1InstituteforAstronomy,UniversityofEdinburgh,RoyalObservatory,BlackfordHill,EdinburghEH93HJ,UK. 2 2DepartmentofPhysics,UniversityofSurrey,Guildford,GU27XH,UK. b e F Accepted2014December22.Received2014December20;inoriginalform2014November19 7 1 ABSTRACT ] Fromastudyoftheintegratedlightpropertiesof200globularclusters(GCs)inM31,Strader A et al. found that the mass-to-light ratios are lower than what is expected from simple stel- G lar population(SSP) modelswith a ‘canonical’stellar initial mass function(IMF), with the . discrepancybeinglargerathighmetallicities.Weusedynamicalmulti-massmodels,thatin- h clude a prescription for equipartition, to quantify the bias in the inferred dynamical mass p - astheresultoftheassumptionthatlightfollowsmass.ForauniversalIMFandametallicity o dependentpresentdaymassfunctionwefindthattheinferredmassfromintegratedlightprop- r ertiessystematicallyunderestimatesthetruemass,andthatthebiasismoreimportantathigh t s metallicities,aswasfoundfortheM31GCs. Weshowthatmasssegregationandaflattening a of the mass function have opposingeffects of similar magnitudeon the mass inferred from [ integratedproperties.Thismakesthemass-to-lightratioasderivedfromintegratedproperties 2 aninadequateprobeofthelow-massendofthestellarmassfunction.Thereis,therefore,no v needforvariationsintheIMF,northeneedtoinvokedepletionoflow-massstars,toexplain 1 theobservations.Finally,wefindthattheretentionfractionofstellar-massblackholes(BHs) 7 is an equally important parameter in understandingthe mass segregation bias. We specula- 9 tively put forward to idea that kinematicaldata of GCs can in fact be used to constrain the 4 totalmassinstellar-massBHsinGCs. 0 . Keywords: globularclusters:general–openclustersandassociations:general. 1 0 5 1 : v 1 INTRODUCTION and Pryor&Meylan (1993). A more significant correlation was i found from a larger sample of GCs by Kimmigetal. (2014). X Thestellarinitialmassfunction(IMF) playsavitalroleinastro- McLaughlin&vanderMarel (2005) found an average hΥ i ≃ V r physicsanditisanongoingdebatewhethertheIMFisuniversalfor 1.45forMilkyWayGCs,whichisslightlylowerthantheSSPpre- a allmetallicities(Bastianetal.2010;vanDokkum&Conroy2010; diction of Υ ≃ 2, appropriate for low metallicities. Thissmall V Gehaetal.2013).Globularclusters(GCs)areimportanttest-beds difference andthetrendwithM hasbeen attributedtothepref- forstudiesoftheIMFandthepresentdaymassfunction(MF)be- erentialescapeoflow-massstarsoverthetidalboundary,reducing causetheyare,inmostcases,singleagedstellarpopulationswith M,buthardlyaffectingL (e.g.Kruijssen2008). V asingle[Fe/H],andthekinematicsofthestarswithinthemisdue tothegravityof thestarsonly. Becausemost of theGC massis Straderetal. (2011, hereafter S11) published the ΥV values inlow-massstars,whereastheluminosityisduetothehigh-mass of 200 GCs in M31, spanning a range of metallicity of −2 . stars,theGCmass-to-light ratioΥ ≡ M/L isconsider tobe [Fe/H] . 0.TheyfoundthatatlowmetallicitiestheaverageΥV V V agrees well with the values from simple stellar population (SSP) a good probe of the shape of the stellar MF. Here L is the V- V models, assuming aKroupa IMF, albeit witha scatter of a factor band luminosity and M is independently found from a measure- oftwo.Forincreasingmetallicities,agrowingdifferencebetween mentofthecluster’sradiusandvelocitydispersion.Recentobser- vational advances have allowed us to measure the structural pa- thedynamicalΥV andtheSSPmodelswasfound,withΥV falling rameters and kinematical properties of GCs in external galaxies belowtheSSPvalues,byuptoafactorof3at[Fe/H]≃0. Similar resultswererecentlyobtainedforMilkyWayGCs(Kimmigetal. up to distances of several tens of Mpc (Smith&Gallagher 2001; 2014).Theseresultsarehardtoexplainbythepreferentialescape Bastianetal.2006;Brodie&Strader2006),spanningalargerange oflow-massstars,becauseitimpliesthatalmostallmetal-richclus- ofenvironments,thereby potentiallyincreasingtheapplicabilityof Υ asaprobeoftheIMF. tershavelostasignificantfraction(∼60%−70%)oftheirinitial V mass. For Galactic GCs, a slight positive correlation between Υ V and M was found by early work by Mandushevetal. (1991) An alternative interpretation is that the IMF gets more bot- (cid:13)c 0000RAS 2 RosemaryL. Shanahan& MarkGieles tom light (fewer low-mass stars) with increasing [Fe/H]. Before issimilartothevalueformorerealisticIMFsthatrolloveratlow accepting the possibility of a varying IMF, we need to establish masses toflatter slopes and are truncated at mlo = 0.1M⊙. For that thereareno metallicitydependent biasesasthe result of dy- ourpurposethissuffices,becausethebehaviourofthemulti-mass namical evolution of GCs in the Υ measurements. A possible modelsissensitiveonlytothetotalmassinlow-massstars,andin- V biasistheeffectofmasssegregationonthemeasurementsofthe sensitivetothemeanmassofthelow-massstars(seeSection5of GCradiusandvelocitydispersion. MostGCsareolderthantheir GG79).Testsconfirmthatourresultsareinsensitivetothischoice. half-massrelaxationtime-scaleτrh(e.g.He´non1961;Gielesetal. Tostudytheeffectofmasssegregationinasystemwithabottom 2011).Thismeansthattheyhadtimetoevolvetowardsequiparti- lightIMF,oraclusterthatisdepletedinlow-massstarsbecauseof tionand,asaresult,themostmassiveobjects(stellarremnantsand dynamicalevolution,wealsoconsideradoublepower-law(‘flat’) turn-offstars)aremorecentrallyconcentratedandmovewithlower IMF velocities.ForresolvedGCsthiseffectcanbetakenintoaccount byfittingmulti-massmodels(e.g.Paustetal.2010;Sollimaetal. dN = B, mlo<mi61M⊙, (2) 2012),whicharedistributionfunctionbasedmodelsthatincludean dmi (Am−i α, 1M⊙ <mi<mup, approximate prescription for equipartition (DaCosta&Freeman whereB = Atomakethefunctioncontinuous.Wenormalisethe 1976; Gunn&Griffin 1979, hereafter GG79). However, in extra- high-massendinthesamewayasforthe‘canonical’IMF(i.e.the galactic samples where the individual stars are not resolved, this sameA),sothereduction inmassduetoflatteningcanbefound ishardertodo(althoughnotimpossible),anditisthereforeoften straightforwardly. assumedthatlightfollowsmass. Weevolveeverystar particletoanageof 12Gyrusing SSE For a universal IMF, the stellar mass function at an age of (Hurleyetal. 2000) for 11metallicities,linearlyspaced in−2 6 12Gyrdoesdependonthemetallicityofthestarsbecauseofdif- [Fe/H] 6 0.Wesplitthedataintobinscorrespondingtothestel- ferences in stellar evolution, and as a result we may expect that lartypesat12Gyr:mainsequencestars(MS),evolvedstars(EV), clusterswithdifferentmetallicities,havedifferentobservableprop- whitedwarfs(WD),neutronstars(NS)andblackholes(BH).The erties.Theideathatametallicitydependentbiasintheobservation- allyderivedclusterpropertiesmayexistisnotnew.Jorda´n(2004) logarithmicspacing1 inmi andthefastSSEcodeallowustoeffi- cientlymodelMFsofoldstellarpopulationsthatarewellsampled consideredmulti-massKingmodels,withmassbinsappropriatefor atallevolutionarystagesandhencepresentdaymassesm. differentmetallicities.Heshowedthatasaresultofmasssegrega- The resulting MFs for a metal-richand a metal-poor cluster tion,clusterswiththesamehalf-massradiusrhandthesameage, witha‘canonical’IMFareshowninFig.1.Fromthisfigurewesee havesmallerhalf-lightradiiinprojection, rhp,L,athigher metal- licities.Thisisbecauseathigh[Fe/H]theturn-offmassishigher thatat[Fe/H] = −2theturn-offmassisslightlylower(0.8M⊙) andasaresultthesestarsandthebrightevolvedstars,whichhave thanat[Fe/H] = 0(1M⊙)andthattheaveragemassofWDsis similarmasses,aremorecentrallyconcentratedthaninmetal-poor higher at low [Fe/H] (0.77M⊙) than at high [Fe/H] (0.65M⊙). Also,thecontributionofremnantstothetotalmassishigheratlow clusters.Jorda´nproposedthatthiseffectisresponsiblefortheob- [Fe/H]. Although these differences are small, they are important servedsizedifferencebetweenmetal-richandmetal-poorGCs(e.g. forthedistributionofthevisiblestars,aswewillshowinthenext Larsenetal. 2001). An apparent size difference between metal- section. rich and metal-poor GCs was also found in N-body simulations Forourdynamicalmodelswecreate13masscomponents:we (Sippeletal.2012)andMonteCarlosimulations(Downing2012) splittheMSstarsinto5binsthatareequallyspacedinlog(m),the ofclusterswithdifferentmetallicities. WDsinto5binsthat areequallyspaced inm,theEV stars,NSs InthisLetterweusemulti-massKingmodelstoquantifythe and,finally,theBHs.Withthe[Fe/H]dependentmassfunctionsin masssegregationbiasinΥ asafunctionof[Fe/H]andfordif- V place,wecannowdescribethedynamicalmulti-massmodels. ferentassumptionsfortheretentionofremnants.In§2wemodel stellarmassfunctionsfordifferent[Fe/H]anddescribethedynam- icalmodels.In§3wepresenttheresultsofacomparisontothedata byS11andourconclusionsanddiscussionarepresentedin§4. 2.2 Multi-massmodels In this section we describe the dynamical models that we use to quantify the effect of mass segregation on the inferred dynami- 2 DESCRIPTIONOFTHEMODELS calmassfromobservations.Foraself-gravitatingsysteminvirial equilibrium,themassM canbewrittenasafunctionofthemass- 2.1 Stellarmassfunctionsatanageof12Gyr weightedmean-squarevelocityofthestars,hv2i,andthevirialra- Here we describe how we compute the stellar mass components diusofthecluster,rv,asM = 2hv2irv/G.Hererv isdefinedas forclusterswithdifferentmetallicities.WecreateNp = 104 star rv ≡ −GM2/(2U),whereGisthegravitationalconstantandU particleswithinitialmassesmi equallyspacedinlogmi between is the total potential energy of the cluster. Our focus ison extra- a lower mass of mlo = 0.2M⊙ and an upper mass of mup = galacticclustersamplesforwhichindividualstarsarenotresolved, 100M⊙.Weconsiderapower-law(‘canonical’)IMF sowewritethevirialrelationsintermsoftheluminosity-weighted mean-squarevelocityinprojectionhv2i andtheradiuscontaining dN p L dmi =Am−i α, (1) halfthetotalluminosityinprojectionrhp,L(or,‘effectiveradius’) where α = 2.35 and A is a constant that normalises the to- tal number of stars in the cluster: A = (1 − α)/(m1−α − m1−α), for α 6= 1. Every star particle is given a weighutpw = 1 Approximatingthemeanmassinabinbythecentrallogarithmicvalue Amlo1i−α(lnmup − lnmlo)/Np, such that Nj=p1wj = 1 and ifisnodntlhyaetxfaocrt1fo0r4astpaorwseoru-rlamwowdeitlhpirnodpeexrt−ies1.s5u.cFhroasmthaecotontvaelrMgenocfettheestMwFe Nj=p1wjmi,j ≃ 0.68M⊙ is the mean masPs of the IMF, which areaccuratetoabout10−5. P (cid:13)c 0000RAS,MNRAS000,000–000 The mass-to-lightratioofglobularclusters 3 100 1.6 m [Fe/H] = −2 MEVS 10-1 1.4 [[FFee//HH]]==0−2 d10-1 N/ WNSD 10-2 1.2 d 2m10-2 BH 10-3 01fi.0 1100-03 0.67 0.01 0.23 0.02 0.07 ρ/ρj010-4 2/v 0fi›.8 [Fe/H] = 0 2vj0.6 /dm10-1 10-5 MS 0›.4 N EV 2md10-2 10-6 WNSD 0.2 10-31.0 0.707.5 0.01 0.00.16 l0o.g002(.5m) 0.041.0 1.5 2.0 10-170-1 1r00/r0 101 0.00 2 4 r6/r08 10 12 14 Figure2.DensityandvelocitydispersionprofilesfortwoofourGCmodels Figure1.Massfunctions fortwoofourevolvedstellar populations: one withW0=7.Althoughourmulti-massmodelshave13bins,forclaritywe metal poor (top panel), one metal rich (bottom panel). Each distribution haveonlyplottedthemiddlemassbinvaluesforMSandWD.Solidlines: issplitintothefivestellartypes:mainsequencestars(MS),evolvedstars [Fe/H]=−2.Dashedlines:[Fe/H]=0. (EV),whitedwarfs(WD),neutronstars(NS),andblackholes(BH).The numbersarethefractionofthetotalmassineachcomponent. stars.Foratypicalmass-luminosityrelationforMSstarsweesti- matethatabout70%oftheMSluminosityisemittedbystarsinthe massrangeofEVstars(&0.65M⊙).Wethereforeassumethatthe M =2 η hvp2iLrhp,L. (3) dynamicalpropertiesofEVstarsaretheonesthatoneinfersfrom η η G integratedlightstudies. r v InFig.2weshow theresultingdensityandvelocityprofiles Here we introduce three factors η, η and η to convert 3- r v for a metal-rich and a metal-poor cluster without BHs. For both dimensionalpropertiestoobservablequantities,namely clusterstheEVstarsaremorecentrallyconcentratedandmovewith η= hv2i rh rv, η = rhp,L, η = hvp2iL. (4) lowervelocitiesthantheMSstarswhichimpliesthatbothηr < 1 hvp2irhprh r rhp v hvp2i and ηv < 1. The underestimation of M is more severe for the metal-richclusterthanforthemetal-poorcluster.Thisisbecauseat Herehvp2iisthemass-weightedmean-squarevelocityinprojection high[Fe/H],theturn-offmassishigher,andtheremnantsareless and rhp is the radius containing half the mass in projection. The massive(seeFig.1),allowingthebrightstarstosegregatefurtherto valueofηdependsonthemodel,andforaPlummer(1911)model thecentreofthecluster(seealsoJorda´n2004;Sippeletal.2012). withanisotropicvelocitydistributionη≃3×(4/3)×(5/4)=5, Wenowneedtomakeachoiceforthedimensionlesscentral and this value is relatively insensitive to the choice of the model potential W0. We choose W0 such that the EV stars have a ra- (Spitzer 1987; PortegiesZwartetal. 2010). From now on we as- tioof thecore radius r0 (or King radius) over rh that isequal to sumethatuncertaintiesinηaresmallandcanbeignored. what is found for the M31 GCs by S11. We obtained the values The factors ηr and ηv equal unity if light follows mass, i.e. forr0/rhp,L oftheGCsinM31fromS11andfoundthatthereis ifΥV isthesameeverywhereinthecluster.Ifthisassumptionis nocorrelationbetweenr0/rhp,L and[Fe/H].Wethereforeadopt made for clusters for which this does not hold, then the product 3values:themeanobservedvalueandthevaluescorrespondingto ηrηv istheerrorthatismadeinthemassestimate.Hurley(2007) themeanand theplusandminus1σ standarddeviation. Because finds from N-body simulations that ηr ≃ 0.5 which implies an r0fortheindividualcomponentshasadifferentmeaningthenr0in errorinM ofafactoroftwo,confirmingthatmasssegregationis singlemassmodelsbecause,wedecidetodefiner0asthedistance animportanteffecttoconsider. tothecentrewherethedensityofEVstarshasdroppedto1/3ofthe Wederivethebiasfactorηrηvfromisotropicmulti-massKing centraldensity,asisthecaseinsinglemassmodelswithW0 &5. modelsasdescribedindetailinGG79.Thedistributionfunctionof Finally,weuserhp,L=0.75rhEV,whererhEVisthe(3D)half-mass eachcomponentmj (section2.1)is radiusoftheEVstars. E Using these three r0/rhp,L values, we produce ten models fj(E)=Aj exp −σ2 −1 . (5) with W0 ranging from 6 to 24, for each [Fe/H]. We then inter- (cid:20) (cid:18) j(cid:19) (cid:21) polate to obtain the values of W0 to obtain the desired r0/rhp,L HereE = 12v2+φ,andφisthe(lowered)specificpotentialandσj value.AsampleoftheW0valuesusedcanbefoundinTable1. isascalevelocity2thatischosentodependonm asσ ∝m−1/2. j j j FromtheMaraston(2005)SSPmodelswefindthatabout65% of the V-band light comes from EV starsand 35% from theMS 3 RESULTS Foreach[Fe/H],r0/rhp,Landdifferentremnantfractions,wecal- culatetheratioofthemassasitwouldbederivedfromtheevolved 2traWl1eDnvoetelotchiatytodnislypeinrstihoenlvimrmitsooffinbfiinnijt.eFcoornrceeanltirsatitciocnoσncjeenqtruaatilosnthveaclueens- stars,Mobs,over thetruemassM,i.e.ηrηv (equation 4).Inthis tthheererafotiroevnjrom0tsin/σejqu<ipa1rtiatinodnj.i0sInmfaosrsthdceopmenindgenstt.uMdieuslti(-Smoolldimelasemtoadl.e2ls01ar5e; cstaalrcsutloatdioenri,vweeMuosbesd,ienxoclrudseirvteolybethceocnosinsttreinbtuwtioitnhftrhoemobthseervevaotilovnesd. Peutenetal.,inprep)weshowthatmulti-massmodelsdescribethephase Forthemodelswitha‘canonical’IMFMobs/M = Mobs/MSSP, spacedistributionofstarsinN-bodysystemsverywell. and for the models with a ‘flat’ IMF we multiplied Mobs/M (cid:13)c 0000RAS,MNRAS000,000–000 4 RosemaryL. Shanahan& MarkGieles 4 CONCLUSIONSANDDISCUSSION Table 1. A sample of the W0 values used for different [Fe/H] and the differentassumptionsforretentionofNSsandBHsfora‘canonical’IMF. Inthisstudy weshow that thediscrepancy between the observed mass-to-light ratio Υ and simple stellar population (SSP) mod- V [Fe/H] r0/rhp,L AllBH&NS NoBH NoBH&NS els as found in a sample of 200 globular clusters (GCs) in M31 byS11,canbeexplainedbymasssegregation.WemodelledGCs 0.45 15.9 8.86 8.41 witharange of metallicitiesand withdifferent remnant retention −2 0.29 17.5 11.1 10.3 0.13 19.8 14.2 12.9 fractions.Ourkeyresultsare: 0.45 23.0 10.8 10.5 • Forclusterswithoutstellar-massblackholes(BHs)andneu- 0 0.29 24.4 13.4 12.4 tronstars,thedynamicalmassderivedfromevolvedstars(Mobs)of 0.13 25.8 16.6 15.1 amasssegregatedclusterunderestimatesthetruemassM,andthis biasisstrongerathigh[Fe/H](factorof∼ 4)thanatlow[Fe/H] (factorof∼2).Thisisduetothehigherturn-offmassandthelower whitedwarfmassesathigh[Fe/H]whichcausetheevolvedstars tobemorecentrallyconcentratedandmovewithlowervelocities, compared to turn-off stars in low [Fe/H] clusters with the same by M/MSSP ≃ 0.41, slightly dependent on [Fe/H], to obtain massdensityprofile(seealsoJorda´n2004;Sippeletal.2012). Mobs/MSSP. The results are shown in Fig. 3. The three panels • ThepresenceofBHshasalargeeffectonthederivedMobs, show the results of three assumptions for the remnant retention in that its value iscloser to the real M for higher retention frac- fraction, fromleft toright: allBHsand allNSsretained, no BHs tions. Despite the fact that a large fraction of BHs probably gets retained and all NSs retained, no BHs and no NSs retained. The ejectedfromGCsastheresultofsupernovakicks,itisimportant resultsforamodel inwhichallBHsareretainedandnoNSsare toconsidertheBHsindynamicalmassmodellingofGCs.Asmall retainedwerefound tobe almostidentical tothemodel inwhich remainingBHpopulationcansurviveforaslongas10half-mass allNSsandallBHswereretained. relaxationtimes(τrh, Breen&Heggie2013).Therecentdiscov- We divided the inferred Υ of each GC in M31 by its cor- V eryoftwoBHcandidatesinM22(Straderetal.2012)confirmsthe responding value of the SSP model (Fig. 1 of S11), based on a needtoconsiderBHswhenderivingΥ . V KroupaIMF,toobtainMobs/MSSPforM31GCs,whereMSSPis • Forclusterswitha‘flat’massfunction,wefindthattheeffect thepresentdaymassofastellarpopulationwitha‘canonical’IMF. ofmasssegregationonMobs/Mislessimportant,suchthatthera- Wenotethatthereisaslightinconsistencyinthecomparisonbe- tioMobs/MSSP,withMSSPisthepresentdaymassforacanonical tweenourmodelsandthedatabecausetheΥ valuesoftheSSP V IMF,issimilartoM/MSSP modelswitha‘canonical’ IMF.This modelsarebasedonasinglevaluefortheretentionfractionofNSs makesΥ insensitivetothelow-massendoftheMF. V andBHs.However,asweshowinFig.1thetotalmassinNSsand BHsneverexceeds9%ofthepresentdayM,sothiseffectissmall. S11findthatthediscrepancybetweenΥ andtheSSPmod- V If all NSs and BHs are retained (left panel), there is hardly els is more important for clusters with lower mass and for clus- any bias because of mass segregation and the correct M is in- terswithshorter τrh,whichwasalsofoundforGCsintheMilky ferred from the EV stars. Without NSs and BHs (right panel), Way(Mandushevetal.1991;Kimmigetal.2014)andCentaurusA 0.25 . Mobs/MSSP . 0.5 for both MFs. The mass segrega- (NGC5128,Rejkubaetal.2007).Thisisconsistentwiththesce- tionterm(ηrηv)ishigherwhenthemassfunctionisflatter,while narioputforwardinthisLetter,becausemasssegregationismore M/MSSPissmaller.Thetwoeffectsappeartoroughlycancel,such importantforclusterswithshorterτrh,i.e.thosewithlowermass. that the resulting ratio Mobs/MSSP is similar. This means that a Zaritskyetal. (2014) report a bi-modality in ΥV, after all lowMobs/MSSP cannotbeinterpretedasaflatteningoftheMF, clustershavebeenagedtoacommonageof10Gyr(ΥV,10).They northeIMF,becauseamasssegregatedmodelwitha‘canonical’ determinedynamical massesfromintegratedlight propertiesof a IMFgivessimilarresults. sampleofstarclusterswithdifferentagesandmetallicitiesandin Thetwoextremesoftheretentionfractionmodels(i.e.allthe differentgalaxies.Theauthorsinterprettheirresultasevidencefor BHandNSretained,andnoneoftheBHandNSretained)encom- twodistinctIMFs.Althoughwedonotdiscussthemasssegrega- pass themajorityof theGC values, and it ispossible tointerpret tion bias in their sample in detail here, we caution to invoke the thespreadinthedataasaspreadinBHretention. need of a varying IMF in a study based on integrated light mea- The [Fe/H] dependence in the middle and right panels can surement,beforebiasesasaresultofmasssegregationhavebeen beexplained withsomesimplestellarevolutionarguments. From fullyquantified. Fig.1weseethatatlowermetallicitiestheturn-offmassislower ThereducedΥ ofMWGCs(McLaughlin&vanderMarel V andthereismoremassinremnants,andtheaveragemassofwhite 2005) and other galaxies has been explained by the depletion dwarf mass and black holes is higher (see also the discussion in of low-mass stars as the result of dynamical ejections (Kruijssen Sippeletal.2012).Asaresult,inalow-metallicitycluster,therem- 2008).Thiseffectisalsomoreimportantforclusterswithshorter nantsaremoreefficientinpushingtheevolvedstarsout,whichin- τrh/lower mass, therefore degenerate with the mass segregation creasestheirvelocitiesandtheirhalf-lightradius,suchthatη and biasreportedhere.Wenotethatpreferentialdepletionoflow-mass v η areclosertounity. starsrequiresmasssegregation,butnotviceversaanditistherefore r These results suggest that the discrepancy between the ob- necessarytoconsider thebiasesduetomasssegregationtogether served GC masses of S11 and the SSPmodels, can be explained withtheeffectofthedepletionoflow-massstars.Hereweshowed bymetallicitydependent masssegregationeffectsandaspreadin that the two effects have opposing effects on Mobs/MSSP, such theretentionfractionofNSsandBHs.Ourresultssuggestthatthe thatΥ isinsensitivetotheslopeoftheMF. V low-mass end of the MF can not be constrained from integrated TheΥV valuesofyoung(few100Myrs)massive(&106M⊙) lightproperties. clustersinmergerremnantsareconsistent withthepredictionsof (cid:13)c 0000RAS,MNRAS000,000–000 The mass-to-lightratioofglobularclusters 5 All BH and NS No BH No BH and NS 2.0 ) NormalIMF S11data P SS FlatIMF r0,L/rhp,L =0.13 M / 1.5 r0,L/rhp,L =0.29 M r /r =0.46 0,L hp,L ( ) v η ηr1.0 ( = P S S M 0.5 / bs o M 0.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 2.5 2.0 1.5 1.0 0.5 0.0 0.5 2.5 2.0 1.5 1.0 0.5 0.0 0.5 [Fe/H] [Fe/H] [Fe/H] Figure3.RatioofinferredmassMobsoverSSPmassMSSPversus[Fe/H]fora‘canonical’IMF(solidlines)andflatIMF(dashedlines).Thebluepoints arethecorrespondingvaluesfortheM31GCstakenfromS11.Thethreelinesineachoftheplotsshowtheresultsformodelsdesignedto‘look’assimilarto theS11GCsaspossible,usingthemeanr0/rhp,Lvalueandtwoσvalues.Forthe‘canonical’IMFM/MSSP=1,andforthe‘flat’IMFM/MSSP≃0.41 . SSPmodelswitha‘canonical’IMF(Bastianetal.2006).Although GehaM.,BrownT.M.,TumlinsonJ.,KaliraiJ.S.,SimonJ.D., these values were derived from integrated light properties, these Kirby E. N., VandenBerg D. A., Mun˜oz R. R., Avila R. J., clusters are significantly younger than their two-body relaxation GuhathakurtaP.,FergusonH.C.,2013,ApJ,771,29 timescale,suchthatmasssegregationislikelynotimportantyet. GielesM.,HeggieD.C.,ZhaoH.,2011,MNRAS,413,2509 Finally, the strong dependence of Mobs/M on the retention GunnJ.E.,GriffinR.F.,1979,AJ,84,752(GG79) fractionof stellarmass BH opens theexciting opportunity touse He´nonM.,1961,Annalesd’Astrophysique,24,369 kinematicdataofGCstodeterminethetotalmassinstellarmass HurleyJ.R.,2007,MNRAS,379,93 BHs,therebyplacingcomplementaryconstraintsonBHretention HurleyJ.R.,PolsO.R.,ToutC.A.,2000,MNRAS,315,543 inMilkyWayGCs. Jorda´nA.,2004,ApJ,613,L117 KimmigB.,SethA.,IvansI.I.,StraderJ.,CaldwellN.,Anderton T.,GregersenD.,2014,arXiv:1411.1763 KruijssenJ.M.D.,2008,A&A,486,L21 Larsen S. S.,Brodie J. P.,Huchra J. P.,Forbes D. A., Grillmair ACKNOWLEDGEMENTS C.J.,2001,AJ,121,2974 This work was carried out as part of the ISIMA programme on MandushevG.,StanevaA.,SpasovaN.,1991,A&A,252,94 Gravitational Dynamics held in July 2014 at CITA, Toronto. We MarastonC.,2005,MNRAS,362,799 acknowledgePascaleGaraudfortheorganisation,thefinancialsup- McLaughlinD.E.,vanderMarelR.P.,2005,ApJS,161,304 port andforproviding astimulatingenvironment. MG thanksthe Paust N. E. Q., Reid I. N., PiottoG., Aparicio A., Anderson J., Royal Society for financial support in the form of a University SarajediniA.,BedinL.R.,ChaboyerB.,DotterA.,HempelM., Research Fellowship (URF) and the European Research Council MajewskiS.,Mar´ın-FranchA.,MiloneA.,RosenbergA.,Siegel (ERC-StG-335936,CLUSTERS).RLSacknowledges thesupport M.,2010,AJ,139,476 of the Scienceand Technology FacilitiesCouncil (STFC)viathe PlummerH.C.,1911,MNRAS,71,460 award of an STFC Studentship. RLS thanks Anna Lisa Varri for Portegies Zwart S. F., McMillan S. L. W., Gieles M., 2010, her support and guidance throughout this work. We thank Mik- ARA&A,48,431 los Peuten, Antonio Sollima, Anna Lisa Varri and Alice Zocchi PryorC.,MeylanG.,1993,inDjorgovskiS.G.,MeylanG.,eds, fordiscussionsduringthe‘GaiaChallenge’meetingandDiederik StructureandDynamicsofGlobularClustersVol.50ofAstro- Kruijssen,Vincent He´nault-Brunet, Jay Strader and Nate Bastian nomicalSocietyofthePacificConferenceSeries,VelocityDis- forcommentsonthemanuscript. Finally,wethanktherefereefor persionsforGalacticGlobularClusters.p.357 constructivecommentsthathelpedtoimprovethepaper. RejkubaM.,DubathP.,MinnitiD.,MeylanG.,2007,A&A,469, 147 SippelA.C.,HurleyJ.R.,MadridJ.P.,HarrisW.E.,2012,MN- RAS,427,167 SmithL.J.,GallagherJ.S.,2001,MNRAS,326,1027 REFERENCES SollimaA.,BaumgardtH.,ZocchiA.,E.B.,GielesM.,He´nault- BastianN.,CoveyK.R.,MeyerM.R.,2010,ARA&A,48,339 BrunetV.,VarriA.,2015,MNRAS,submitted BastianN.,SagliaR.P.,GoudfrooijP.,Kissler-PatigM.,Maraston SollimaA.,BellazziniM.,LeeJ.-W.,2012,ApJ,755,156 C.,SchweizerF.,ZoccaliM.,2006,A&A,448,881 Spitzer L., 1987, Dynamical evolution of globular clusters. BreenP.G.,HeggieD.C.,2013,MNRAS,432,2779 Princeton,NJ,PrincetonUniversityPress,1987,191p. BrodieJ.P.,StraderJ.,2006,ARA&A,44,193 StraderJ.,CaldwellN.,SethA.C.,2011,AJ,142,8(S11) DaCostaG.S.,FreemanK.C.,1976,ApJ,206,128 Strader J., Chomiuk L., Maccarone T. J., Miller-Jones J. C. A., DowningJ.M.B.,2012,MNRAS,425,2234 SethA.C.,2012,Nature,490,71 (cid:13)c 0000RAS,MNRAS000,000–000 6 RosemaryL. Shanahan& MarkGieles vanDokkumP.G.,ConroyC.,2010,Nature,468,940 ZaritskyD.,ColucciJ.E.,PessevP.M.,BernsteinR.A.,Chandar R.,2014,arXiv:1409.3235 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.