ebook img

Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model PDF

149 Pages·2016·2.581 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model

SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 11 Makoto Katori Bessel Processes, Schramm– Loewner Evolution, and the Dyson Model 123 SpringerBriefs in Mathematical Physics Volume 11 Series editors Nathanaël Berestycki, Cambridge, UK Mihalis Dafermos, Princeton, USA Tohru Eguchi, Tokyo, Japan Atsuo Kuniba, Tokyo, Japan Matilde Marcolli, Pasadena, USA Bruno Nachtergaele, Davis, USA More information about this series at http://www.springer.com/series/11953 Makoto Katori Bessel Processes, – Schramm Loewner Evolution, and the Dyson Model 123 Makoto Katori Department ofPhysics ChuoUniversity Tokyo Japan Additional material tothis bookcanbedownloaded from http://extras.springer.com. ISSN 2197-1757 ISSN 2197-1765 (electronic) SpringerBriefs inMathematical Physics ISBN978-981-10-0274-8 ISBN978-981-10-0275-5 (eBook) DOI 10.1007/978-981-10-0275-5 LibraryofCongressControlNumber:2015959919 ©TheAuthor(s)2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerScience+BusinessMediaSingaporePteLtd. To Hiroko, Machiko, and Rieko Preface Thisbookisbasedonmygraduate-courselecturesgivenattheGraduateSchoolof Mathematics of the University of Tokyo in October 2008 (at the invitation of T.FunakiandM.Jimbo),attheDepartmentofPhysicsoftheUniversityofTokyo in November 2010 (at the invitation of S. Miyashita), at the Department of MathematicsofTokyoInstituteofTechnologyinDecember2010(attheinvitation ofK.Uchiyama),atÉcoledePhysiquedesHouches(LesHouchesPhysicsSchool) in May 2011 (organized by C. Donati-Martin, S. Péché and G. Schehr), at the Faculty of Mathematics of Kyushu University in June 2013 (at the invitation of H. Osada and T. Shirai), and at the Graduate School of Arts and Sciences of the University of Tokyo in July 2014 (at the invitation of A. Shimizu). First of all I would like to thank those organizers for giving me such opportunities. Thepurposeofmylecturesistointroducerecenttopicsinmathematicalphysics and probability theory, especially the topics on the Schramm–Loewner evolution (SLE) and interacting particle systems related to random matrix theory. A typical exampleofthelattersystemsisDyson’sBrownianmotionmodel.Forthispurpose IhaveconsideredonestorytotelltheSLEandtheDysonmodelas‘children’ofthe Bessel processes. The Bessel processes make a one-parameter family of one-dimensionaldiffusionprocesseswithparameterD,inwhichtheD-dimensional Besselprocess,BES(D),isdefinedastheradialpartoftheD-dimensionalBrownian motion, if D is a positive integer. This definition implies that Bessel processes are ‘children’ of the Brownian motion, and hence, the SLE and the Dyson model are ‘grandchildren’ of the Brownian motion. The organization of this book is very simple. In Chap. 1 the parenthood of Brownian motion in diffusion processes is clarified and we define BES(D) for any D(cid:1)1. There, the importance of two aspects of BES(3) is explained. SLE is intro- duced as a complexification of BES(D) in Chap. 2. We show that rich mathematics andphysicsinvolvedinSLEareduetothenontrivialdependenceoftheBesselflow on D. In Chap.3 Dyson’sBrownian motion model withparameter β is introduced as a multivariate extension of BES(D) with the relation D¼βþ1. We will con- centrate on the case where β¼2. In this case the Dyson model inherits the two vii viii Preface aspects of BES(3) and has very strong solvability. That is, the process is proved to bedeterminantalinthesensethatallspatio-temporalcorrelationfunctionsaregiven by determinants, and all of them are controlled by a single function called the correlation kernel. Many parts of this book come from the joint work with Hideki Tanemura. I thank him very much for the fruitful collaboration over 10 years. I would like to thank Alexei Borodin, John Cardy, Patrik Ferrari, Peter John Forrester, Piotr Graczyk, Kurt Johansson, Takashi Imamura, Christian Krattenthaler, Takashi Kumagai, Neil O’Connell, Hirofumi Osada, Tomohiro Sasamoto, Grégory Schehr, Tomoyuki Shirai, and Craig Tracy for giving me encouragement to prepare the manuscript. I am grateful to Nizar Demni, Sergio Andraus, Syota Esaki, Ryoki Fukushima, andShuta Nakajima for careful readingofthedraftandalot ofuseful comments. All suggestions given by two anonymous reviewers of this book are very important and useful for improving the text and I acknowledge their efforts very much. Thanks are due to Naoki Kobayashi and Kan Takahashi for preparing several figures in the book. I thank Masayuki Nakamura at the Editorial Department of Springer Japan for his truly kind assistance during the preparation of this manuscript. The research of the author was supported in part by the Grant-in-Aid for Scientific Research (C) (No.21540397 and No.26400405) of the Japan Society for the Promotion of Science. Tokyo Makoto Katori December 2015 Contents 1 Bessel Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 One-Dimensional Brownian Motion (BM). . . . . . . . . . . . . . . . 1 1.2 Martingale Polynomials of BM . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Drift Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Quadratic Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Stochastic Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Itô’s Formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 Complex Brownian Motion and Conformal Invariance . . . . . . . 16 1.8 Stochastic Differential Equations for Bessel Processes. . . . . . . . 17 1.9 Kolmogorov Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.10 BESð3Þ and Absorbing BM . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.11 BESð1Þ and Reflecting BM . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.12 Critical Dimension Dc ¼2 . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.13 Bessel Flow and Another Critical Dimension Dc ¼3=2 . . . . . . 28 1.14 Hypergeometric Functions Representing Bessel Flow. . . . . . . . 32 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 Schramm–Loewner Evolution (SLE). . . . . . . . . . . . . . . . . . . . . . . 41 2.1 Complexification of Bessel Flow . . . . . . . . . . . . . . . . . . . . . . 41 2.2 Schwarz–Christoffel Formula and Loewner Chain . . . . . . . . . . 45 2.3 Three Phases of SLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4 Cardy’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.5 SLE and Statistical Mechanics Models . . . . . . . . . . . . . . . . . . 54 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 Dyson Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1 Multivariate Extension of Bessel Process . . . . . . . . . . . . . . . . 57 3.2 Dyson Model as Eigenvalue Process . . . . . . . . . . . . . . . . . . . 59 ix x Contents 3.3 Dyson Model as Noncolliding Brownian Motion . . . . . . . . . . . 65 3.4 Determinantal Martingale Representation (DMR). . . . . . . . . . . 72 3.5 Reducibility of DMR and Correlation Functions . . . . . . . . . . . 77 3.5.1 Density Function ρξðt;xÞ. . . . . . . . . . . . . . . . . . . . . . 79 3.5.2 Two-Time Correlation Function ρξðs;x;t;yÞ . . . . . . . . 80 3.6 Determinantal Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.7 Constant-Drift Transformation of Dyson Model. . . . . . . . . . . . 86 3.8 Generalization for Initial Configuration with Multiple Points. . . 89 3.9 Wigner’s Semicircle Law and Scaling Limits . . . . . . . . . . . . . 93 3.9.1 Wigner’s Semicircle Law . . . . . . . . . . . . . . . . . . . . . 93 3.9.2 Bulk Scaling Limit and Homogeneous Infinite System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.9.3 Soft-Edge Scaling Limit and Spatially Inhomogeneous Infinite System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.10 Entire Functions and Infinite Particle Systems . . . . . . . . . . . . . 99 3.10.1 Nonequilibrium Sine Process. . . . . . . . . . . . . . . . . . . 101 3.10.2 Nonequilibrium Airy Process. . . . . . . . . . . . . . . . . . . 105 3.11 Tracy–Widom Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.11.1 Distribution Function of the Maximum Position of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.11.2 Integrals Involving Resolvent of Correlation Kernel . . . 114 3.11.3 Nonlinear Third-Order Differential Equation . . . . . . . . 115 3.11.4 Soft-Edge Scaling Limit . . . . . . . . . . . . . . . . . . . . . . 117 3.11.5 PainlevéII and Limit Theorem of Tracy and Widom. . .. 118 3.12 Beyond Determinantal Processes . . . . . . . . . . . . . . . . . . . . . . 122 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.