ebook img

BeppoSAX observations of the X-ray pulsar MAXI J1409-619 in low state: discovery of cyclotron resonance features PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview BeppoSAX observations of the X-ray pulsar MAXI J1409-619 in low state: discovery of cyclotron resonance features

THEASTROPHYSICALJOURNAL,747:,2012MARCH1 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 BeppoSAXOBSERVATIONSOFTHEX–RAYPULSARMAXIJ1409- 619INLOWSTATE:DISCOVERYOF CYCLOTRONRESONANCEFEATURES MAUROORLANDINI1,FILIPPOFRONTERA1,2,NICOLAMASETTI1,VITOSGUERA1,LARASIDOLI3 TheAstrophysicalJournal,747:,2012March1 2 1 ABSTRACT 0 Thetransient500sX–raypulsarMAXIJ1409- 619wasdiscoveredbytheslitcamerasaboardMAXIonOc- 2 tober17,2010,andsoonafteraccuratelylocalizedbySwift. Wefoundthatthesourcepositionwasserendip- itously observed in 2000 during BeppoSAX observations of the Galactic plane. Two sources are clearly de- n a tected in the MECS: one is consistent with the position of IGR J14043- 6148and the other one with that of J MAXI J1409- 619. We reporton the analysis of this archival BeppoSAX/MECSobservationintegrated with newlyanalyzedobservationfromASCAandasetofhigh-energyobservationsobtainedfromtheoffsetfields 3 2 oftheBeppoSAX/PDSinstrument. FortheON-sourceobservation,the1.8–100keVspectrumisfitbyanab- sorbedpowerlawwithaphotonindexΓ=0.87-+00..1299,correspondingto2–10and15–100keVunabsorbedfluxes ] of 2.7×10- 12 and 4×10- 11 erg cm- 2 s- 1, respectively, and a 2–10 keV luminosity of 7×1034 erg s- 1 for a E 15kpcdistance.ForaPDSoffsetfieldobservation,performedaboutoneyearlaterandshowinga15–100keV H flux of 7×10- 11 ergcm- 2 s- 1, we clearly pinpointthree spectralabsorptionfeaturesat 44, 73, and128keV, . resolvedbothinthespectralfitandinthe Crabratio. We interpretthesenotharmonicallyspacedfeaturesas h duetocyclotronresonances.Thefundamentalenergyof44±3keVcorrespondstoamagneticfieldstrengthat p - theneutronstarsurfaceof3.8×1012(1+z)G,wherezisthegravitationalredshift.Wediscussthenatureofthe o sourceinthelightofitspossiblecounterpart. tr Subject headings: X–rays: binaries — Stars: individual: MAXI J1409- 619 — Stars: individual: s IGRJ14043- 6148 a [ 2 1. INTRODUCTION position(Kenneaetal.2010b). The source was also observed on October 22 by the Pro- v On October 17, 2010 Yamaokaetal. (2010b) reported on 8 anoutburstfromanewsource,namedMAXIJ1409- 619,re- portional Counter Array (PCA; Jahodaetal. 1996) aboard 1 vealed by the Gas Slit Camera (GSC; Miharaetal. 2002) of RXTE(Bradtetal.1993).TheX–rayspectrumshowsastrong 2 theMonitorofAll-skyX-rayImage(MAXI;Matsuokaetal. 6.5 keV Iron line (E.W. 200 eV), and a continuum modeled 1 2009)experimentaboardtheInternationalSpaceStation.The byreflectionorpartiallycoveringabsorption(Yamaokaetal. 2. 4–10keVfluxdecreasedfromitsinitialvalueof∼40mCrab 2010a). The 2–10 keV flux was about 10- 10 erg cm- 2 s- 1, 1 onOctober17to∼30mCrabonthefollowingday. and was strongly variable on time-scales of hundreds of 0 On October 20 Swift (Gehrelsetal. 2004) began a target seconds. An observation performed on December 4 found 1 ofopportunityobservationoftheMAXIJ1409- 619errorcir- MAXI J1409- 619 at a flux level 6–7 times higher than the : cle(0.◦2radius). Kenneaetal.(2010b)usedtheX–RayTele- October observation (Yamamotoetal. 2010), and confirmed v scope(XRT;Burrowsetal.2005) to pinpointthepositionof the500spulseperiodobservedbySwift. Xi the new source with an estimated 90% confidence level un- FromobservationsperformedonDecember2and3bythe certaintyof1.′′9andcoordinatesRA(J2000): 14h08m 02.s56, GLAST Burst Monitor (GBM; Meeganetal. 2007) aboard r a Dec(J2000): - 61◦ 59′ 00.′′3. Its spectrum is fit by an ab- theFermisatellite,thepresenceofa500sdoublepeakedpul- sorbedpowerlaw,withphotonindexΓ=- 0.5+0.1. Afollow- satingsignalwasconfirmed(Camero-Arranzetal.2010). - 0.6 Followingthe MAXIJ1409- 619localizationbySwift, we up XRT observation on November 30 found the source ∼7 searched for BeppoSAX (Boellaetal. 1997a) archival obser- times brighter than on October 20, with an average 0.3–10 keVfluxof7×10- 10ergcm- 2s- 1(Kenneaetal.2010a).Only vations with the transient position within the Narrow Field Instruments (NFIs) Field of View (FoV). We found that an inthislatterobservationa∼500spulsationwasdetected,with observationperformedin the framework of a Galactic plane a 42% sinusoidal rms modulation. The source was detected surveycontainedtheMAXIJ1409- 619position(Sgueraetal. since October 18 also in the 15–50 keV energy band by the 2010). Swift Burst Alert Telescope (BAT; Barthelmyetal. 2005) at InthisPaperwereportonthespectralanalysisofthisBep- thelevelof∼30mCrab(Kenneaetal.2011). poSAXobservation,integratedwithhigh-energydataobtained Neither catalogued radio nor X–ray sources were present fromtheoffsetfieldsofthePDS(Fronteraetal.1997)instru- in the Swift error circle, while a 2MASS IR star, the likely ment. We further present the analysis of a newly analyzed IRcounterpartoftheX–raytransient,lays2.′′1fromtheXRT ASCAobservationperformedduringaGalacticplanesurvey. 1INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) 2. OBSERVATIONS Bologna,viaGobetti101,40129Bologna,Italy 2.1. BeppoSAX/PDSObservations 2DipartimentodiFisica,UniversitàdegliStudidiFerrara,viaSaragat 1,44122Ferrara,Italy We searched our BeppoSAX archive for observations cov- 3INAF/IstitutodiAstrofisicaSpazialeeFisicaCosmica(IASF)Milano, eringtheMAXIJ1409- 619position. Fromourlocalarchive viaBassini15,20133Milano,Italy weareabletoextractnotonlyproductsfromtheNFInominal 2 Orlandinietal. GAL PLANE SUR 02+16 2−10 keV SAX MECS 2000 Feb 7 Exposure: 47747 s 14h10m00s 08m00s 06m00s 04m00s 02m00s 0 0 5 −61o30’00" 0 0 4 MAXI #1 45’00" 0 0 els3 x Pi #2 Y −62o00’00" 0 0 2 Agile 00 PDS OFF 15’00" 1 100 200 300 400 500 Figure1. RegioncenteredontheMAXIJ1409- 619position(thesmallblack X Pixels circle)withthePDSpointings:ONpointings(red),POFFpointings(green), andMOFFpointings(cyan). ThePDSFoVis1.◦3(FWHM).Notethetwo 0 4 8 13 34 PDSobservations(oneONandoneMOFF)fullycoveringthesourceposi- tion,andthree(oneONandtwoPOFF)partiallycoveringtheposition(with Figure2. 2–10keVMECSimageofamosaicofthetwo,partiallyoverlap- theterm“partially”weintendthatthesourceisbeyondthecollimatorFWHM ping,ON-sourceBeppoSAXobservationsOP08317andOP08386,smoothed butbeforeitsFWZI).ThebolddottedlinecorrespondstotheGalacticplane. withaGaussianfilterwithaσof24′′.Twosourcesareclearlydetected.The pointings(alsoavailablefromASDC–theASIScientificdata onepresentintheMAXIJ1409- 619errorboxislistedas#2inTable2.The two“cuts-out”areduetotheremovalofthecalibrationsourceevents. Center4),butalsonetspectrafromthePDSoffsetfields. Indeed,becauseoftherockingtechniqueusedtoderivethe LECScanbeoperatedonlywhenintheEarthshadow. Good PDSbackground,twopositionsoffsetby3.◦5withrespectto data were selected when the instrument configurations were theNFIdirectionwerealternativelyobservedevery96s. For nominal, and with an elevation angle above the Earth limb fieldsfreeofsources,weexpectthatdifferencesbetweenthe >4◦. countspectra in the “plus OFF” (thereafter POFF) and “mi- A mosaic of the two, partially overlapping, ON-source nusOFF”(thereafterMOFF)positionswillbeconsistentwith OP08317 and OP08386 MECS images is shown in Fig- zero. If,ontheotherhand,acontaminatingsourceispresent ure2, wheretworelativelybrightsourcesareclearlypresent inoneofthetwooffsetfields,thenthespectraldifferencecor- (see Table 2). Source #2 position is consistent with respondstoanet,backgroundsubtractedPDSspectrumofthe MAXIJ1409- 619,whilethesource#1positionisconsistent offsetfield. with the X–ray source IGR J14043- 6148(Birdetal. 2010). We found three sets of observations containing the Thethirddetection(source#3)correspondstoextendedlow- MAXI J1409- 619 position in their FoVs. In Figure 1 we energy emission observed in the LECS image, and may be showafindingchartcenteredontheMAXIJ1409- 619posi- associatedwitharadiosourceatapproximatelythesamepo- tionandshowingboththeON-sourceandOFF-sourcepoint- sition(Cohen&Green2001). Theuncertaintyinthe MECS ings(thePDS FoV is 1.◦3 FWHM). InTable 1 we detailthe positionsis30′′(Perri&Capalbi2002). wholesetofBeppoSAXobservationsusedinouranalysis.All We extracted LECS and MECS data from a 4′ (30 pixel) errorsare givenat the 90%confidencelevel for a single pa- radiuscircularregioncenteredonthe MAXIJ1409- 619po- rameter. sition.ConcerningLECSdata,therearenotenoughcountsto allow a spectral reconstruction. On the other hand, we are 2.1.1. ON-sourceobservations(OP08317andOP08386) able to extract a 1.8–10 keV MECS spectrum, that we re- The first ON-source BeppoSAX pointing with binned to a minimum of 30 counts per bin to allow the use MAXI J1409- 619 in the NFI FoV was performed on of χ2 statistics. We used a response matrix appropriate for January 29, 2000 within a program aimed at performing a the off-axis position of the source. Because the position of systematic study of part of the Galactic plane (OP08317 MAXIJ1409- 619isclosetotheGalacticplane,wechecked – Galactic Plane Survey Field 02). Another ON-source forpossiblecontaminationfromtheGalacticridgeemission. observation (OP08386 – Galactic Plane Survey Field 16), Tothisend,fromtheMECSimageweextractedbackground was performed a week later. This observation partially spectrafromtwosource-freeregions,offsetbyaboutthesame overlapstheOP08317field(seeFig.1). angleasthesource(totakeintoaccountvignetting),andwith The Galactic plane Field 02 net exposures of the two the same extraction radii. These backgroundsare consistent imaging instruments Low-Energy Concentrator Spectrome- withthemeanbackgroundusedroutinelyforMECSobserva- ter (LECS; 0.1–10 keV; 37′ FoV; Parmaretal. 1997) and tions. For this reason the mean backgroundwas used in the Medium-EnergyConcentratorSpectrometer (MECS; 1.8–10 spectralanalysis. keV;56′ FoV;Boellaetal.1997b)are6812and22060s, re- Given that the PDS is not an imaging instrument, before spectively. The difference is due to the constraint that the performing joint MECS/PDS spectral fits it is necessary to addresstheproblemofdeterminingwhetherthehighenergy 4http://www.asdc.asi.it/bepposax emission observed by the PDS is due to MAXI J1409- 619 BeppoSAXobservationsofMAXIJ1409- 619:discoveryofCRFs 3 Table1 ListofPDSpointingscoveringtheMAXIJ1409- 619errorbox Seq OPn Date Duration SourceName Dist RA DEC Type PDSrate S/N (ks) (′) (J2000) (J2000) (15–100keVc/s) 1 08317 29/01/2000 42 GalPlaneSur2 19.6 211.3474 - 61.88437 ON 0.247±0.069 3.6 2 10480 07/01/2001 220 CircinusGalaxy 27.3 212.8952 - 61.80250 MOFF 0.450±0.032 14.1 3 08386 07/02/2000 52 GalPlaneSur16 49.5 210.2841 - 61.83828 ON 0.086±0.049 1.7 4 01652 23/02/1997 90 AlphaCen 53.6 213.5273 - 62.53019 POFF 0.086±0.052 1.6 5 08484 19/02/2000 47 GalPlaneSur23 70.0 213.5936 - 61.09281 POFF 0.144±0.072 2.0 Note. —The“SourceName”refers,incaseofoffsetfields,tothenominalONpointing. Thedistancelistedincolumn6refersto theangulardistanceofthePDSpointingfromtheMAXIJ1409- 619position. Table2 SourcesdetectedintheMECSfieldforOP08317 # Ratea pixel R.A. Dec S/N Counterpart (2–10keV) x y (2000) 1 45.5±3.6 373.2 317.1 140431.3 - 614710.8 12.6 IGRJ14043- 6148 2 10.6±1.3 188.2 233.2 140800.4 - 615824.1 8.15 MAXIJ1409- 619 3 3.77±0.79 293.9 250.1 140600.5 - 615609.6 4.77 aInunitsof10- 3Counts/s Dickey&Lockman 1990) and unabsorbed 2–10 and 15– 100 keV fluxes of 2.7×10- 12 and 4×10- 11 erg cm- 2 s- 1, V−1 respectively. Counts sec ke−1 10−3 From F2.i1g.u2r.eM1OwFFe ocfafnsetsefieeldthoabtswerevahtiaovne(OthPre1e04s8e0t)s of PDS Normalized 10−4 Ffiofocfirseetnwttoosbtoasfteitsrhvtieacmtsiot(onOspPec0ro1fvo6er5rmi2naagnutdhseOefuPMl0Aa8n4Xa8lI4yJ)s1iws4e(0s9de-oe6nth1oe9thopabovsseeitrsivouenfd-. countratesinTable1). Ontheotherhand,fortheMOFFoff- ) 1 sResiduals ( −10 sheatFvefiireseltnd,ouowgfehthscethaCeticiskrtciecidnsuffsoorGraattlhhaeoxryopuoregbshseensrpcveeactitoorfanl,aaOnnyPal1yc0sa4its8a.0lo,gduaetda 2 5 10 20 50 100 X–ray sources in the MOFF observation FoV. The only Energy (keV) source present is the EGRET (Hartmanetal. 1999) source Figure3. 1.8–100keVjointMECS/PDScountratespectrum(plussigns) 3EGJ1410- 6147,thatwasrecentlyassociatedwiththe50ms and the power law best fitmodel (histogram) ofMAXIJ1409- 619 in the radiopulsarPSRJ1410- 6132(O’Brienetal.2008). Nosig- OP08317field.Thefitresidualsareshowninthebottompanel. nificantX–rayemissionhasbeendetectedaroundtheEGRET or to the INTEGRAL source. Bear in mind that, in comput- source(Dohertyetal.2003);thereforeweassociatethePDS ing fluxes, it is necessary to take into account the triangu- detectionwithMAXIJ1409- 619. lar angular response of the PDS collimators (see Fig. 2 in Westartedbyextractinga15–100keVcoarserbinnedPDS Fronteraetal.2007). spectrumoftheMOFFfield(assumingasitsbackgroundthe First, we analyzedthe ON-sourceOP08386MECS obser- corresponding POFF spectrum). The fit with a power law vation, that contains IGR J14043- 6148 (detected at >15σ) gives a photon index of 2.2±0.3, with a normalized χ2 of ν butnotMAXIJ1409- 619.Forthisobservationwehaveonly 1.31for11dof. Fromtheshapeoftheresidualsandfromthe a marginal PDS detection (see Table 1), therefore it seems quite different photon index with respect to the ON-source plausible to associate the high-energy emission observed in observation,we suspected the presenceof a changeof slope the OP08317 observation with MAXI J1409- 619. To fur- inthespectrumbetween20and30keV.Thisbreakisnotde- ther confirmthis association, we verifiedthat the PDS spec- tectedintheON-sourceobservationbecauseofitspoorstatis- trum extrapolated at lower energies is consistent with the tics. We triedbotha brokenanda cutoffpowerlaw. By fix- MAXIJ1409- 619MECSspectrum. ing the cutoff energy at 25 keV (we were only able to con- In Figure 3 we show the joint MECS/PDS 1.8–100 keV strainthebreak/cutoffenergybetween20and40keV),acut- MAXI J1409- 619 count rate spectrum, together with its off power law fit gives a power law index Γ=0.9+0.4, with - 0.3 power law best fit (normalized χ2ν of 0.18 for 15 de- a normalized χ2ν of 1.06 for 11 dof. While from a statisti- grees of freedom – dof). It is characterized by a hard calpointofviewthetwofitsareequivalent(anF-testgivesa spectrum, with power law photon index 0.87+- 00..2199, NH = 36%probabilityofchanceimprovement(PCI)oftheχ2–see 2.8+3.4 ×1022 cm- 2 (consistent with galactic absorption, AppendixA for the discussion on the correctnessof the use - 2.2 4 Orlandinietal. ∼44keVlineisstatisticallysignificant(PCIis6×10- 3).Sec- V−1 0.01 (otnhde,ltihneedwifidfitchulhtiaedstionbdeetfierxmedin,iwnghitlheethoethleirnelinneorpmaraalimzaettieorns Counts sec ke−1 10−3 iasstraeatifssfeteieccntsetdaosbc“ylheaolarllreygse”reeicnroronthrssetr)ucacortnetthidneuuleuinmteo:ptrhwoeefiflahec.atvTethhenatolittnheeenwoliiundgethhs Normalized 10−4 ilesivnitedhedeneretpfftohorrewtheceocmlainnpeuisntefaedtrhfoirgnohlmyerathneneuep“rhgpoieerlsel)”i.mwitid(tthhi,swwhiilllebefomr othree Following our detection strategy, we performed a second 1 fit on the 15–80 keV energy range. The fit with only one ) sResiduals ( −2−10 20 En5e0rgy (keV) 100 da2τGo×as=fui.g19snsB01ii+-afiy∞7nc)aa.,idnnwdTtalihhynbiegslbeosearettnphtceoteoirtonhtnfihdeterw,liGlawnisnaeieunthpsowsatχiriaaad2νncmtchoieenfwpte0taara.bssb4sl8afioerrx:efpeoχtdEri2νoc3aynwt0caw7=dseok73feo3.6Vb+-(P45.tfaoCNkirnIeo3eVti2des, - 42 Figure4. 15–200keVMOFFPDScountratespectrum(plussigns)andthe howthetwolineenergiesarenotinanharmonicratio. bestfitpowerlawplus3Gaussiansinabsorptionmodel(histogram). Thefit Then we extended the energy range to the whole 15– residualsareshowninthebottompanel. TheGaussianenergiesareleftfree 4an,danadre74k4eV±f3o,r7t3h+-e45t,harnedel1i2n8es+-.58keV.Thelinewidthswereconstrainedto4, 2(χ02ν0koefV4.b5afnodr.4A6gdaionf)t,hesofitwweiathddtwedoalinnoetshwerasabnsootrapctcioenptlaibnlee, the width of which was fixed at 7 keV. The fit significantly oftheF-test), thecutofffitnicelymatchesthespectralindex improved(χ2ν of0.58for44dof,PCIof10- 10),withthebest observedat lower energies. The corresponding15–100keV fitE =128+5keV.τ wasnotconstrained(thiswasnotasur- cyc - 8 flux,correctedforthetriangularresponseofthecollimator,is prise because, as discussed above, we have no signal in the 7.0×10- 11ergcm- 2s- 1. “hole”,andthereforewearenotabletoputalimittotheline Intriguedby the shape of the residuals, we tried a smaller normalization). rebinningfactorandawider(15–200keV)energyrange. We Finally, we constrained the line energies to be in an har- were surprised to find the spectrum shown in Figure 4. Ab- monic ratio. In this case we obtain a χ2 of 1.22 for 46 ν sorption features at ∼40, ∼70, and ∼120 keV are quite ev- dof. Thebestfitparametersofthefundamental5wereE = cyc ident. We also noted that the points that trail these features 41±1keV,τ =11+9. Allthelinewidthswerefixed,asinthe at ∼50, ∼90, and ∼150keV seems to be in agreementwith - 7 previouscasewiththelineenergiesleftfree,butwewerenot a hard continuumup to 200 keV. To test this hypothesis,we abletoconstrainthe(1:2)and(1:3)linenormalizations. performedafittothedatabelow30keVtogetherwiththese In order to verify that the observed features were not of trailingpoints.Nocutoff(thebreakenergyisnotconstrained) instrumental origin, and at the same time to better charac- orbrokenpowerlaw(thetwophotonindicesareequal)model terizethecyclotronresonancefeatures(thereafterCRFs),we areabletofitthedata, whileapowerlaw withphotonindex performedanormalizedCrabratioanalysis(Orlandini2004) 1.0±0.2does(χ2 =0.56for20dof).Thereforethechangeof ν on the MOFF spectrum, as we successfully employed for slope in 20–40keV derivedfrom the analysis of the coarser the detection of CRFs in numerous X–ray pulsars (see, e.g. binned energy spectrum is really due to the presence of the Orlandinietal. 1998). As itis evidentfromthe top panelof absorption features. The first absorption feature drives the Figure 5, the ratio between the MAXI J1409- 619 and the positionofthebreak,whilethehigherenergyonesarespread Crab count rate spectra shows a “hole” in the 38–44 keV bytherebinning,resultinginlow-count,highenergybinsthat range, due to the fundamentalCRF. To enhance the feature, arefitbyachangeofslope. we multipliedthe MAXI J1409- 619/Crabratio by the func- Tofurthersupportthisinterpretation,weperformedajoint tionalformoftheCrabspectrum,i.e.asimplepowerlawwith fit with the MECS spectrum (thisanalysis is detailed in Ap- photonindexequalto2.1. Theresultisshowninthesecond pendixB).Wefindthatacutofforabrokenpowerlawmod- panelofFigure5. Finally,inthelowerpanel,weshowthera- elsarenotabletofitthisbroadbandspectrumwiththecon- tiobetweenthepreviousfunctionandtheMAXIJ1409- 619 straintΓ∼0.9below10keV. Thisimpliesthattheoriginof bestfitcontinuumpowerlawmodel,togetherwithaGaussian thechangeofslopeisnotduetothepresenceofacutoffbutto fittothefundamentalCRF. TheGaussianwidthwasfixedat somethingelse,likelyabsorptionfeatures.Forthisreasonsas 4keV,whiletheGaussiancentroidenergyis43+2keV.Please thecontinuumwewilluseapowerlawwithΓfixedat0.87, - 1 notethatthis value is a lower limit, because it doesnottake asderivedbytheanalysisonthebroadbandspectrumofthe intoaccounttheintrinsicenergyresolutionofthePDSinstru- firstobservation. ment. As throughlydiscussed in AppendixA, the assessment of InordertogiveaquantitativeevaluationoftheCRFinthe thestatisticalsignificanceoftheseabsorptionfeatureshasto normalizedCrabRatio weperformedaruntest(seedetailed be done with great care. Our strategy was to evaluate the discussioninAppendixA).Upto∼34keVtheresidualsare significance of each feature one at a time. We started with a power law fit in the energy range 15–55 keV, and we ob- consistentwithrandomfluctuations(N+=12;N- =9;Nr=13; consistentwithrandomfluctuationatthe84%). Ontheother tained an unacceptable χ2 of 1.4 for 25 dof. The inclusion ν of a Gaussian in absorption(gabsin XSPEC) with centroid energyE =44±3keV,τ =16+14,andwidthfixedat4keV 5Thereafterwewillindicatethefundamentalresonanceas(1:1),meaning cyc - 7 withthistheordinalnumberoftheresonancewithrespecttothefundamental. significantlyimprovedthefit(χ2ν equalto0.48for23dof). Withthisnotationthefirstharmonicwillbeindicatedas(1:2),thethird(1:3), Twocommentsonthismeasurementareinorder: first,the andsoon. BeppoSAXobservationsofMAXIJ1409- 619:discoveryofCRFs 5 of this source are consistent with those of a late O/early B-typestar(Wegner1994)withareddeningofA ≈20mag. V This,usingtheformulaofPredehl&Schmitt(1995),implies acolumndensityofN ∼3.6×1022cm- 2,whichisconsistent H with that inferred from the Swift and BeppoSAX spectral analysisresults. Thislargeextinctionisalsosupportedbythe non-detection of the optical counterpart of the source. All this points to a likely HMXB nature of this source, hosting a heavily absorbed early-type star, similar to several cases of INTEGRAL hard X–ray sources identified as HMXBs at optical and/or NIR wavelengths (see, e.g., Masettietal. 2010). Assuming then A ≈20 mag along the MAXI J1409- 619 V line of sight and a B0 spectral type for the companion star in this system, we can infer its distance, depending on the luminosity class (main sequence, giant or supergiant) of the star. Using the tabulated absolute magnitudes for this type ofstar(Lang1992)wefind, forthesethreecases, respective distancesof∼4.6,∼7.9and∼14.5kpc. Giventhatthelarge absorptionfoundalongthelineofsightofthissourceatboth NIR and X–ray wavelengths is consistent with the Galactic one, we consider most likely that the correct distance is the largest one. Thus, MAXI J1409- 619 is quite likely located Figure5. Top:RatiobetweenMAXIJ1409- 619MOFFandCrabcountrate in the far side of the Galaxy, i.e. in the farthest parts of the spectra. Middle: theMAXIJ1409- 619/Crab ratiomultipliedbyE- 2.1,the Sagittarius-Carina arm, and its mass donor star is likely an functionalformoftheCrabspectrum.Thedottedlinecorrespondstothebest early-typesupergiant. fitpowerlawcontinuum. Bottom: ratiobetweentheformerexpressionand thebestfitpowerlawcontinuum,togetherwithaGaussianfittothe∼43keV 4. DISCUSSION CRF.ThestatisticalassessmentoftheCRFhasbeenevaluatedwitharuntest, findingthatwecanrejectthelinebeingrandomatthe99%confidencelevel We found five sets of observations containing the posi- (seetextandAppendixAfordetails). tionofMAXIJ1409- 619inourBeppoSAX/PDSarchive,per- hand, in the 34–50 keV band we see a clear structure in the formedin1997,2000,and2001,andoneintheASCAarchive residuals. In this case from a run test with N+ =2, N- =14, (March 1998). In all our observations the source was in a N =2wewecanrejectthenullhypothesisofrandomnessat lowstate,with15–100keVfluxesintherange∼2–8mCrab, r the99%confidencelevel. andnospectralvariabilityduringtheobservations. Forcom- parison, an integrated exposure (over 5 years) of 2.4 Ms by 2.2. ASCAobservation INTEGRAL/IBIS provides 2σ upper limits on the persistent The region around MAXI J1409- 619 was observed by quiescent emission of 0.2 and 0.4 mCrab in the 20–40 and 40–100keV energybands, respectively(Sgueraetal. 2010). ASCA on March 2, 1998 for a net exposure time of about Whenassumingthesourcefluxesinoutburstasmeasuredby 18ks. Thesourceisclearlydetected,anditsspectrumiscon- Swift(Kenneaetal.2010b,2011)andRXTE(Yamamotoetal. firmedto be quite hard, with a best fit powerlaw photonin- dexΓ=0.1+0.8andanunabsorbed1–10keVfluxof3×10- 12 2010), from our low state measurement we can infer a dy- - 0.6 namicrangeof400in15–50keV,andof300in2–10keV. ergcm- 2 s- 1. Theabsorptioninthedirectionofthesourceis The discovery of CRFs in the low state spectrum of notwellconstrainedbythefit,withanupperlimitof3×1022 MAXI J1409- 619, together with its ∼500 s pulsations, un- cm- 2,consistentwiththeSwiftandBeppoSAX/MECSresults. ambiguously identify the source as an accreting X–ray bi- nary pulsar. Only few sources show multiple CRFs, and 3. AVERYRED(DENED)COUNTERPARTFORMAXIJ1409- 619 only two show resonances above the (1:2). Three CRFs AsstressedbyKenneaetal.(2010b),aNIRsourcebelong- were observed during the 2004–2005 outburst of the X–ray ing to the 2MASS catalogue(Skrutskieetal. 2006) is found pulsar V0332+53 (Coburnetal. 2005; Kreykenbohmetal. within 2.′′1 of the MAXI J1409- 619position as determined 2005; Tsygankovetal. 2006), and five (possible six) CRFs bytheXRT.Accordingtothatcatalogue,thissource(labeled were discovered in the spectrum of 4U 0115+63 during as 2MASS J14080271- 6159020) has NIR magnitudes J = its 1999 giant outburst (Santangeloetal. 1999; Heindletal. 15.874±0.086, H = 13.620±0.022 and K = 12.560±0.021. 1999; Ferrignoetal. 2009). In both cases, deviations from Nocataloguedopticalcounterpartispresentatthepositionof a pure harmonic ratio among the CRFs were observed, and this NIR source, and inspection of the DSS-II-Red digitized were explainedin terms of departuresfroma classical dipo- archival plates6 does not show any evident optical object at lar structure of the magnetic field in the line-formingregion thatlocation.FollowingMonetetal.(2003)wecanthusplace (Nishimura2005,2008). aconservativeupperlimit,R>20,totheR-bandmagnitudeof The magnetic field strength at the neutron star surface theopticalcounterpartofthissource. Theabovemagnitudes corresponding to E = 44 keV is 3.8×1012(1+z) G cyc thusindicatethatthisisanextremelyredobject. (Canuto&Ventura1977),wherez,thegravitationalredshift, Indeed, assuming the Milky Way extinction law foratypicalneutronstarofmass1.4M andradius10Km, ⊙ (Cardellietal. 1989), we find that the NIR color indices is about 0.3. When left as free parameters in the fit, we found that the best fit CRF line energies do not follow the 6http://archive.eso.org/dss/dss harmonic relation E = nE . A slightly non-harmonicity is n 1 6 Orlandinietal. Figure7. ErrorboxofAGLJ1410- 6143(bigredcircle)superimposedon the20–100keVINTEGRAL/IBISdeepmosaicimage(∼2.3Msexposure). TheBeppoSAX/MECSpositionofMAXIJ1409- 619ismarkedbythegreen square. The two small yellow ellipses represent the Fermi γ–ray sources 2FGLJ1409.9- 6129and2FGLJ1413.4- 6204,respectively. Whitecontours (from50%to99%)refertotheEGRETsource3EGJ1410- 6147. Second, at variance with the V0332+53 and 4U 0115+63 observations,bothperformedduringgiantoutbursts,ourBep- poSAXobservationswereperformedwhileMAXIJ1409- 619 was in a low state. This did not allow the study of the de- pendence of the CRF parameters as a function of luminos- ity, an importanttool for study of the physicalconditionsin Figure6. Harmonicity ofthe MAXIJ1409- 619 CRF line energies. The the line-forming region (Miharaetal. 2004; Nakajimaetal. dashedblacklinecorrespondstoalinearfit(thatis,En=nE1)tothedata, 2006;Klochkovetal.2011). whilethecoloredstripstakeintoaccountrelativistic effects, asdetailedby Thelikelyearly-typeopticalcounterpartandthe500spul- Eq.(1).Eachstripcorrespondstoafixedvalueofthemagneticfieldstrength B12=B×1012 G,andtoarange0.0001–1forsin2θ,whereθistheangle sation makes MAXI J1409- 619 a HMXB pulsar. Accord- betweenthephotondirectionandthatofthemagneticfield. WhileE1 and ingtothenatureofthesecondarystarwehavetwopossibil- E3areconsistentwithB12∼3.8,E2isconsistentwithamagneticfieldabout ities: the source is a supergiantfast X–ray transient (SFXT; 20%lower. Sgueraetal. 2005; Negueruelaetal. 2006) or a Be/HMXB. In favor of the former interpretation is the highly reddened expectedwhenrelativisticeffectsaretakenintoaccount(see, supergiant as possible counterpart, the typical outburst X– e.g.,Meszaros1992) ray luminosity of 2×1037 erg s- 1 (assuming a distance of 14.5 kpc), and the dynamic range of more than two orders E =m c2q1+2n(B/Bcrit)sin2θ- 1 1 (1) ofmagnitude(∼300)thatistypicaloftheso-called“interme- n e sin2θ 1+z diate”SFXT (Sgueraetal. 2007; Clarketal. 2010). Against wehavethatthesourceactivephase,abouttwomonthslong whereme istheelectronrestmass,cthespeedoflight,θ the (Uenoetal.2010;Kenneaetal.2011),issignificantlylonger angle between the photon and the magnetic field direction, thatthattypicalofSFXT(see,e.g.,Sidoli2009). Ifthiswere andBcrit=4.414×1013Gisthecriticalmagneticfieldstrength thecase,thenourmagneticfieldmeasurementwouldruleout wherethecyclotronenergyequalstheelectronrestmass. themagnetarnatureforSFXTs(Bozzoetal.2008). Theob- Theobserved(1:2)and(1:3)ratiosofthelineenergieswith servedpropertiesofMAXIJ1409- 619arealsoinagreement respectto the fundamental, 1.7±0.2and 2.9±0.3, cannotbe withthoseobservedinotherBe/HMXBs,like1A1118- 615, explainedin termsof Eq. (1), as it is evidentfromFigure 6. a 400 s X–ray pulsar with a hard X–ray spectrum (Γ∼1), a Afittotheharmonicrelation,shownasthedashedline,gives CRF at ∼55 keV, and long (tens of years) periods of quies- E1=41±3keV (in agreementwith the best fit value Ecyc = cence interrupted by giant (Type-II) outbursts lasting weeks 41±1 keV found when imposing the harmonic relation in tomonths,inwhichtheX–rayluminosityincreasesbyafac- the spectral fit), but with poor significance (χ2ν =2.27 for 2 tor∼200(see,e.g.,Rutledgeetal.2007). Thiswouldputthe dof). In the same figurewe also showthe harmonicrelation sourceafactor∼2–3closer. fromEq.(1)fordifferentvaluesofthemagneticfieldandthe Finally, we note that MAXI J1409- 619 is located within angleθ. Takingintoaccountrelativisticeffects,wefoundthat the 0.◦5 error box of the unidentified transient MeV source themagneticfieldresponsibleforthe(1:1)and(1:3)CRFsis AGL J1410- 6143 (see Fig. 7) discovered on February 21, about20%higherthanthatresponsibleforthe(1:2)CRF. 2008bythe γ–raysatellite AGILE (Tavanietal. 2009a) dur- Two pointsareworth noticing: it is alwaysthe (1:2)reso- ingabrightMeVflarelastingonlyaboutoneday(Pittorietal. nance that shows the larger disagreementwith the harmonic 2008; Orlandinietal. 2008). The AGILE large position un- relation, and this could be due to the fact that this CRF is certainty makes very difficult the identification of its lower duetopureabsorption(Nishimura2003),whilefortheother energy counterpartresponsible for the γ–ray emission. De- resonancesother effects, like multiple scattering and photon spite this drawback, it is intriguing to note that the flaring spawning,enterintoplay(see,e.g.,Schönherretal.2007,and source MAXI J1409- 619is the only cataloguedhardX–ray referencestherein).Unfortunately,becausewearenotableto source above 20 keV (20–100 keV) to be located inside the reconstruct the CRF profiles, we cannot extract more infor- AGILEerrorbox,accordingtoalltheavailablecatalogsinthe mation,liketheelectrontemperatureandthegeometryofthe HEASARC database. Thisspatialcorrelationis furthersup- emittingregion. portedbyasimilartransientnatureforbothMAXIJ1409- 619 BeppoSAXobservationsofMAXIJ1409- 619:discoveryofCRFs 7 and AGL J1410- 6143. We also point out that this is not a Ferrigno,C.,Becker,P.A.,Segreto,A.,Mineo,T.,&Santangelo,A.2009, unique case. To date, a few HMXBs have been unambigu- A&A,498,825 ously detected as flaring MeV sources lasting only a few Frontera,F.,Costa,E.,dalFiume,D.,etal.1997,A&AS,122,357 days (Sabatinietal. 2010; Tavanietal. 2009b; Abdoetal. Frontera,F.,Orlandini,M.,Landi,R.,etal.2007,ApJ,666,86 Gehrels,N.,Chincarini,G.,Giommi,P.,etal.2004,ApJ,611,1005 2009). Inaddition,thereareseveralotherHMXBsproposed Hartman,R.C.,Bertsch,D.L.,Bloom,S.D.,etal.1999,ApJS,123,79 as best candidatecounterpartsof unidentifiedtransientMeV Heindl,W.A.,Coburn,W.,Gruber,D.E.,etal.1999,ApJ,521,L49 sources located on the Galactic plane (Sgueraetal. 2009, Jahoda,K.,Swank,J.H.,Giles,A.B.,etal.1996,inSPIEConf.Proc.,Vol. 2011; Sguera 2009). For the sake of completeness, we note 2808,X-RayandGamma-RayInstrumentationforAstronomyVII,59 that within the largeAGILE errorbox there are a numberof Kennea,J.A.,Curran,P.,Krimm,H.,etal.2010a,ATel,3060,1 highenergyMeVsources(seeFig.7):i)2FGLJ1409.9- 6129 Kennea,J.A.,Krimm,H.,Romano,P.,etal.2010b,ATel,2962,1 Kennea,J.A.,Romano,P.,Mangano,V.,etal.2011,inProceedingsof4th and 2FGL J1413.4- 6204 have been reported in the second InternationalMAXIWorkshop,toappear(arXiv:1101.6055) Fermisource catalog (Abdoet al. 2011)as firmly identified Klochkov,D.,Staubert,R.,Santangelo,A.,Rothschild,R.E.,&Ferrigno, γ–raypulsarsandthisunambiguouslyexcludestheirassocia- C.2011,A&A,532,A126 tionwiththetransientAGLJ1410- 6143,ii)3EGJ1410- 6147 Kreykenbohm,I.,Mowlavi,N.,Produit,N.,etal.2005,A&A,433,L45 Lampton,M.,Margon,B.,&Bowyer,S.1976,ApJ,208,177 isstillunidentifiedalthoughithasbeenlikelyassociatedwith Lang,K.R.1992,AstrophysicalData:PlanetsandStars(NewYork: the γ–ray pulsar 2FGL J1409.9- 6129(O’Brienetal. 2008). Springer-Verlag) However,Wallaceetal.(2000)reportedapossibleMeVflare Masetti,N.,Parisi,P.,Palazzi,E.,etal.2010,A&A,519,A96 from3EGJ1410- 6147lastingafewdaysonNovember1991. Matsuoka,M.,Kawasaki,K.,Ueno,S.,etal.2009,PASJ,61,999 This behavior is at variance with the proposed association Meegan,C.,Bhat,N.,Connaughton,V.,etal.2007,inAmericanInstituteof with the γ–ray pulsar 2FGL J1409.9- 6129while it is more PhysicsConferenceSeries,Vol.921,TheFirstGLASTSymposium,ed. S.Ritz,P.Michelson,&C.A.Meegan,13 compatiblewiththeflaringnatureofAGLJ1410- 6143. Fur- Meszaros,P.1992,HighEnergyRadiationfromMagnetizedNeutronStars thermulti-wavelengthstudies(radio,NIR,X–rayandγ–ray) (Chicago:UnivertyofChicagoPress) oftheskyregionarestronglyneededandencouragedtoshed Mihara,T.,Kawai,N.,Yoshida,A.,etal.2002,inSPIE,Vol.4497,X-Ray andGamma-RayInstrumentationforAstronomyXII,173 morelightonthenatureofsuchhighenergyemitters. Mihara,T.,Makishima,K.,&Nagase,F.2004,ApJ,610,390 Monet,D.G.,Levine,S.E.,Canzian,B.,etal.2003,AJ,125,984 Nakajima,M.,Mihara,T.,Makishima,K.,&Niko,H.2006,ApJ,646,1125 ACKNOWLEDGEMENTS Negueruela,I.,Smith,D.M.,Reig,P.,Chaty,S.,&Torrejón,J.M.2006,in Wethankananonymousrefereeforhelpfulcommentsand ESASpecialPublication,Vol.604,TheX-rayUniverse2005,165 suggestionsthatgreatlyimprovedthepaper. TheBeppoSAX Nishimura,O.2003,PASJ,55,849 satellite was a joint Italian-Dutch programme. Part of this Nishimura,O.2005,PASJ,57,769 Nishimura,O.2008,ApJ,672,1127 work is based on archival data, software or online services O’Brien,J.T.,Johnston,S.,Kramer,M.,etal.2008,MNRAS,388,L1 providedbythe ASI Scientific Data center (ASDC), and the Orlandini,M.2004,inX–rayandGamma–rayAstrophysicsofGalactic High Energy Astrophysics Science Archive Research Cen- Sources,4thAGILEScienceWorkshop,119,(astro-ph/0402628) ter(HEASARC),providedbyNASA’sGoddardSpaceFlight Orlandini,M.,dalFiume,D.,Frontera,F.,etal.1998,ApJ,500,L163 Center. This publication makes use of data products from Orlandini,M.,Frontera,F.,Bassani,L.,Landi,R.,&Sguera,V.2008,ATel, 1419,1 the2MASSarchive. Theauthorsacknowledgesupportfrom Parmar,A.N.,Martin,D.D.E.,Bavdaz,M.,etal.1997,A&AS,122,309 ASI/INAF grants I/088/06/0, I/009/10/0 and I/033/10/0 and Perri,M.&Capalbi,M.2002,A&A,396,753 grantPRININAF/2009. Pittori,C.,Verrecchia,F.,Santolamazza,P.,etal.2008,ATel,1394,1 Predehl,P.&Schmitt,J.H.M.M.1995,A&A,293,889 Press,W.H.,Teukolsky,S.A.,Vetterling,W.T.,&Flannery,B.P.2007, REFERENCES NumericalRecipes:TheartofScientificComputing(Cambridge: CambridgeUnivertyPress) Protassov,R.,vanDyk,D.A.,Connors,A.,Kashyap,V.L.,& Siemiginowska,A.2002,ApJ,571,545 Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.2009,Science,326,1512 Rutledge,R.E.,Bildsten,L.,Brown,E.F.,etal.2007,ApJ,658,514 Barlow,R.J.1989,Statistics:AGuidetotheUseofStatisticalMethodsin Sabatini,S.,Tavani,M.,Striani,E.,etal.2010,ApJ,712,L10 thePhysicalSciences(NewYork:WileyInterscience) Santangelo,A.,Segreto,A.,Giarrusso,S.,etal.1999,ApJ,523,L85 Barthelmy,S.D.,Barbier,L.M.,Cummings,J.R.,etal.2005, Schönherr,G.,Wilms,J.,Kretschmar,P.,etal.2007,A&A,472,353 SpaceSci.Rev.,120,143 Sguera,V.2009,in7thINTEGRALWorkshop:AnINTEGRALViewof Bevington,P.R.1969,DataReductionandErrorAnalysisforthePhysical CompactObjects,PoS(Integral08)082,(arXiv:0902.0245) Sciences(NewYork:McGraw–Hill) Sguera,V.,Barlow,E.J.,Bird,A.J.,etal.2005,A&A,444,221 Bird,A.J.,Bazzano,A.,Bassani,L.,etal.2010,ApJS,186,1 Sguera,V.,Drave,S.P.,Bird,A.J.,etal.2011,MNRAS,417,573 Boella,G.,Butler,R.C.,Perola,G.C.,etal.1997a,A&AS,122,299 Sguera,V.,Hill,A.B.,Bird,A.J.,etal.2007,A&A,467,249 Boella,G.,Chiappetti,L.,Conti,G.,etal.1997b,A&AS,122,327 Sguera,V.,Orlandini,M.,Frontera,F.,Bazzano,A.,&Bird,A.J.2010, Bozzo,E.,Falanga,M.,&Stella,L.2008,ApJ,683,1031 ATel,2965,1 Bradt,H.V.,Rothschild,R.E.,&Swank,J.H.1993,A&AS,97,355 Sguera,V.,Romero,G.E.,Bazzano,A.,etal.2009,ApJ,697,1194 Burrows,D.N.,Hill,J.E.,Nousek,J.A.,etal.2005,SpaceSci.Rev.,120, Sidoli,L.2009,AdvancesinSpaceResearch,43,1464 165 Skrutskie,M.F.,Cutri,R.M.,Stiening,R.,etal.2006,AJ,131,1163 Camero-Arranz,A.,Finger,M.H.,&Jenke,P.2010,ATel,3069,1 Tavani,M.,Barbiellini,G.,Argan,A.,etal.2009a,A&A,502,995 Canuto,V.&Ventura,J.1977,Fund.CosmicPhys.,2,203 Tavani,M.,Bulgarelli,A.,Piano,G.,etal.2009b,Nature,462,620 Tsygankov,S.S.,Lutovinov,A.A.,Churazov,E.M.,&Sunyaev,R.A. Cardelli,J.A.,Clayton,G.C.,&Mathis,J.S.1989,ApJ,345,245 2006,MNRAS,371,19 Cash,W.1979,ApJ,228,939 Ueno,S.,Sugizaki,M.,Negoro,H.,etal.2010,ATel,3067,1 Clark,D.J.,Sguera,V.,Bird,A.J.,etal.2010,MNRAS,406,L75 Wallace,P.M.,Griffis,N.J.,Bertsch,D.L.,etal.2000,ApJ,540,184 Coburn,W.,Kretschmar,P.,Kreykenbohm,I.,etal.2005,ATel,381,1 Wegner,W.1994,MNRAS,270,229 Cohen,M.&Green,A.J.2001,MNRAS,325,531 Yamamoto,T.,Nakajima,M.,Yamaoka,K.,etal.2010,ATel,3070,1 Dickey,J.M.&Lockman,F.J.1990,ARA&A,28,215 Yamaoka,K.,Kaaret,P.,Nakahira,S.,etal.2010a,ATel,2969,1 Doherty,M.,Johnston,S.,Green,A.J.,etal.2003,MNRAS,339,1048 Eadie,W.T.,Drijard,D.,&James,F.E.1971,StatisticalMethodsin Yamaoka,K.,Nakahira,S.,Negoro,H.,etal.2010b,ATel,2959,1 ExperimentalPhysics(Amsterdam:North-Holland) 8 Orlandinietal. APPENDIX ONTHESTATISTICALSIGNIFICANCEOFABSORPTIONFEATURES Theanalysisofthesignificanceofspectralabsorptionfea- tures, and in particular CRFs, has historically been fraught withseriousmisunderstanding,thatweattributetotheappli- cationoftechniquesmadeforemissionfeaturestoabsorption ones. Thishasaveryprofoundimpactonthestatisticalanal- ysis,asdetailedinthefollowing. First, when searching for spectral features, and especially absorption features, the binning of data is crucial: indeed a narrowfeaturecanbelostifthedatabinningistoohigh(see, e.g., Eadieetal. 1971, page 259), as we showed in the data analysis detailed in Section 2.1.2. But before searching for thebestbinningfactor,ithasbecomecustomarytorebindata inordertoachieveaminimumnumberofcountsineachbin. Thereasonofthisprocedureisthatwemustavoidbinswith few counts if we want to use the χ2 statistics to test for the Figure8. Exampleonhowthegoodnessoffitestimationperformedbythe goodnessof ourfit (in other words, errorsmustbe normally χ2statisticsnotalwaysisabletofindthebestfitmodeltothedata. Inthis distributed). Aminimum20countsperbinfilterissufficient casethelinearfittothe12datapointsyieldsanormalizedχ2 of1,butthe toachievethisgoal(Cash1979). deviationwithrespecttothestraightlineisevident. Aruntestshowsthat thesedeviationshaveonly1.3%probabilitytobeduetorandomfluctuations The application of this criterion to backgroundsubtracted (seetextfordetails). spectra is correct for instruments that are not background dominated(that is, they have an intrinsically low numberof this routine is not incorporated in XSPEC). This same test counts per bin), like a detector on the focal plane of X–ray mustbeusedtoassessiftwodifferentmodelsarestatistically optics. On the other hand, when the net source spectrum is equivalent or not (and indeed we used it in Section 2.1.2 to obtained by subtracting two high counts spectra this correc- compare the power law and the cutoff power law fits). It is tionmustnotbeapplied(instrumentslikeBeppoSAX/PDSor worthnotingthattheapplicationoftheF-testtothestatistical RXTE/HEXTE are backgrounddominated, with a very high assessmentofCRFsisnotaffectedbytheconcernsraisedby number of counts per energy channel). Although the net itsusewithemissionlines(Protassovetal.2002). source counts can be very low, they are still Gaussian dis- Third, CRFs are very shallow features, with their count tributed, because resulting from the difference of two nor- ratesoftenattheinstrumentsensitivitylevel.Wethereforeex- mallydistributedcounts. pecterrorstobedominant,andconsequentlytheχ2couldnot Second,iffeaturesarepresentinthesourcespectrum,they bethebestestimatoroftheCRFsignificance. Weneedatest (clearly)showupin thefit residuals, andthestandardgood- thattakesintoaccountthestructureoftheline(aninformation ness of fit estimator, the minimization of the χ2 statistics whichislostintheχ2,becausewecomputethesquareofthe (Lamptonetal.1976), should(clearly)indicatethatthefitis differencebetweenthe data andthe model). In otherwords, not“good”andanadditionalcomponentisnecessary.Thein- we need to compute what is the probabilitythat a particular clusionofanewcomponenttothecontinuumshouldresultin structurevisibleinthefitresidualsoccursbychance. areductionofthereducedχ2. Inordertoassesswhetherthe The run test (also known as Wald-Wolfowitz test; Barlow improvementof the χ2 is due to chance or it is because the 1989;Eadieetal.1971)worksonthesignsofthedeviations, newcomponentissignificantitiscustomarytousetheF-test thatisontheformoftheresiduals. Tobetterclarifyhowthe (see,e.g.,Barlow1989,page160). runtest worksgivea look atFigure 8, adaptedfromBarlow A very important point has to be raised here, because we (1989): when fitting the 12 data points with a straight line have two completely different approaches whether we are thenormalizedχ2isexactly1(likelyduetoerroroverestima- dealing with emission or absorption features. In the former tion). Butitisevidentbyeyethatthefitisnotgood(indeed casewearedealing,usingaXSPECterminology,withanad- thedatacomefromaparabolicmodel). Thereasonisthatif ditivecomponent,andwetestthenullhypothesisthattheco- thefitweregoodweshouldexpectthatthenumberofpoints efficientofthenewtermiszero(Bevington1969,page200). “above”thefittinglineshouldnotgrouptogether,butshould ThisistheF-testroutinethatisincorporatedintherecentver- be intermixed with points “below” the fitting line (and this sionsofXSPEC. shouldbemoretrueasthenumberofdatapointsincreases). Ontheotherhand,whendealingwithanabsorptionfeature, If, on the other hand, we observe only small groups of data thecomponentisnotadditivebutmultiplicative(seeroutines with the same “sign” (called runs), this means that our data gabs or cyclabs). It is therefore obviousthat we cannot arenotrandomlydistributedwithrespecttothefittingmodel, usethe F-testforan additivecomponent,becausewe cannot butthereisanunderlyingtrend. varyto zerothe new componentcoefficientwithoutmodify- Aswe cansee fromFigure8, we have 12points, 6 points ing the parameters of the original model. The two compo- “above”thefittingline(letuscallthemN+)and6points“be- nents (the multiplicative model and the original continuum) low” the fitting line (N- ). The number of runs Nr is only 3, arestronglycoupled,andvariationsinonewillaffectalsothe suspiciouslysmall.IndeedtheprobabilityofobtainingN ≤3 r other. Thereforewemustuse adifferentF-test, asdescribed is1.3%,tellingusthatthestructureobservedintheresiduals inPressetal.(2007,page730),thatteststhenullhypothesis isnotduetorandomfluctuationsbuttoawrongmodelization thattheobservedvariancescomesfromthesamesample(and (thelinearfit). BeppoSAXobservationsofMAXIJ1409- 619:discoveryofCRFs 9 From this example, and from the real-case analysis per- losetheabsorptionfeature; formedontheresidualsshowninFigures5and9,shouldbe clearthatthe goodnessoffitin thecase ofdatastructuresin 2. In order to assess the significance of a CRF the F-test theresidualsshouldnotbeaddressedonlywiththeχ2estima- is perfectly suitable, but we must use the correct rou- tor,butithastobesupportedbytheruntest. tine:theF-testroutineincludedinXSPECisapplicable Inconclusion,thisisasortofcookbookforacorrecteval- only to an additivecomponent(in particular, an emis- uationofthestatisticalsignificanceofabsorption(CRFs)fea- sion line), while both gabs and cyclabs are multi- turesinthespectraofX–raysources: plicative; 1. Be careful with the binning: although CRFs are usu- 3. The evaluationof the statistical significance of a CRF allybroadfeatures,atoosmallbinningcanhidestruc- mustbesupportedbyothertests,especiallyinthepres- tures. When dealing with backgrounddominateddata enceofstructuresinthefitresiduals:theruntestisable (like, for example, BeppoSAX/PDS or RXTE/HEXTE to discriminatewhetherthestructureis duetorandom net spectra) never rebin data in order to have a mini- fluctuationsornot. mum number of counts per bin, otherwise we risk to THECONTINUUMSPECTRALMODELOFMAXIJ1409- 619 Theanalysisperformedonthebroadbandspectrumofthe thelowenergypart,below10keV.Thesystematicdeviations pointedMAXIJ1409- 619observationyieldsasbestfitcon- fromthemodel(informationlostbytheχ2 test,asdiscussed tinuumapowerlawwithindex∼0.9(seesection2.1.1). On inAppendixA)canbequantifiedbymeansoftherunteston the other hand, the analysis performed on a coarser binned theMECSresiduals(N+=8,N- =6,Nr =3). Theprobability spectrum of the offset observation indicates the presence of ofobtainingN ≤3is0.5%,thereforethestructureobserved r achangeofslopearound20–40keV(seesection2.1.2). Be- in the residuals is not due to random fluctuations but to the causeafinerrebinningofthissecondobservationrevealedthe wrongmodelizationofthecontinuum.Thesameresultisob- presenceoffeaturesthatcanbeexplainedasCRSFs,itisim- tainedwiththebrokenpowerlawfit(seepanelc.inFigure9): portanttounderstandwhetherthischangeofslopeisduetoa thereisnomatchtotheMECSdata. cutoffinthecontinuumorisacombinedeffectofthebinning andthepresenceoftheabsorptionfeatures. Table3 From the pointed observation we know that data below BestfitparametersforthejointMECS/PDSspectralfits 10keV mustbe describedbya powerlaw with Γ∼0.9. To PowerLaw Cutoff BrokenPL PowerLaw takeintoaccountthisconstraintweperformedajointfitofthe +3gabs highenergyPDSspectrumfromthesecondobservationwith thelowenergyMECSspectrumfromthefirstobservation. Xbe–AsriadltyehsoputuhglashattrahstealtrowewoknesnopewercngtrytaodcnuooemtteoshfrrooewpmraodnciyeffsessprienengcttrooafblsXvea–rrvriaaaytbisoilnibtsyy, EcΓΓut2off 0.87··±····0.07 - 01.4·7±·5·+- 400..35 02..209763+-+-+-740010....2296 1.0····-+··00..23 χ2ν(dof) 2.48(66) 0.91(65) 0.78(64) 0.54(59) thecircumstellarmaterial(see,forexample,thecaseofVela X–1orGX301–2).Becauseoursourcedoesnotshowanyin- trinsic absorption or emission lines, signatures of reprocess- ing,weareconfidentthatourMECSspectrumdidnotchange These results demonstrate that the change of slope is not betweenthetwoobservations. in the continuumbut is due to somethingelse: we madethe Firstwetriedafitwithapowerlaw,modifiedatlowenergy hypothesis that its origin are absorption features. Therefore by photoelectric absorption. All the parameters are left free thetruecontinuummodelisapowerlawtogetherwithCRSF buttheN (fixedatthe2.8×1022cm- 2 valueobtainedfrom features(seepaneld.inFigure9). Becausewearenotableto H theON-sourceobservation),andtheresultisshowninpanel disentanglethecontinuumandtheCRSFs, duetothebroad- a.ofFigure9. ThefitparametersarelistedinTable3. nessofthefeaturesandtheirlowstatistics,weneedtofixthe Thefitisnotstatisticallyacceptable,andtheslopeisdriven powerlawindextothevalueobtainedbythebroadbandfit. by the low energypart of the spectrum. To fit also the PDS Justasatest,weperformedalltheanalysisontheCRSFsby data we need something that is able to change the slope at fixingthepowerlawindexat1.0,1.1,and1.2,corresponding about40keV. to the 1.0±0.2 value obtained from the fit to the PDS data Nowletustestwhetherwecanexplainthischangeofslope below30keVandthepointstrailingtheCRSFs. TheCRSF in termsofa cutoffin thecontinuum. We first tried a cutoff parametersare all consistent with each other, demonstrating powerlaw(seepanelb.inFigure9): thefitisstatisticallyac- thatthey do notdependon the particularvalue of the power ceptablebutthepowerlawindexdoesnotmatchwiththatof lawindex. 10 Orlandinietal. 0.01 0.01 V−1 V−1 10−3 ke ke nts sec −1 10−3 nts sec −1 10−4 ou ou 10−5 C C d d malize 10−4 a) malize 10−6 b) Nor Nor 10−7 2 1 ) ) suals ( 0 suals ( 0 Resid −2 Resid −1 −2 10 100 10 100 Energy (keV) Energy (keV) 0.01 0.01 V−1 V−1 ke ke nts sec −1 10−3 nts sec −1 10−3 u u o o C C malized 10−4 c) malized 10−4 d) or or N N 1 1 ) ) suals ( 0 suals ( 0 Resid −1 Resid −1 −2 −2 10 100 10 100 Energy (keV) Energy (keV) Figure9. 1.8–200keVjointMECS(fromthepointedobservation)/PDS(fromtheoffsetobservation)spectrum.a.Fitwithapowerlawcontinuum.b.Fitwith acutoffcontinuum. c.Fitwithabrokenpowerlawcontinuum. d.FitwithapowerlawcontinuumandthreeCRSFs.Theonlymodelabletofitsimultaneously thelow(below10keV)andhighenergydataisthepowerlawplusthreeCRSFs.ThebestfitparametersarelistedinTable3.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.