ebook img

Bayesian Structural Equation Modeling PDF

550 Pages·2021·11.962 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bayesian Structural Equation Modeling

Bayesian Structural Equation Modeling Methodology in the Social Sciences David A. Kenny, Founding Editor Todd D. Little, Series Editor Thisseriesprovidesappliedresearchersandstudentswithanalysisandresearchdesignbooksthat emphasize the use of methods to answer research questions. Rather than emphasizing statistical theory,eachvolumeintheseriesillustrateswhenatechniqueshould(andshouldnot)beusedand howtheoutputfromavailablesoftwareprogramsshould(andshouldnot)beinterpreted. Common pitfallsaswellasareasoffurtherdevelopmentareclearlyarticulated. RECENTVOLUMES PRINCIPLESANDPRACTICEOFSTRUCTURALEQUATIONMODELING, FOURTHEDITION RexB.Kline HYPOTHESISTESTINGANDMODELSELECTIONINTHESOCIALSCIENCES DavidL.Weakliem REGRESSIONANALYSISANDLINEARMODELS:CONCEPTS,APPLICATIONS, ANDIMPLEMENTATION RichardB.DarlingtonandAndrewF.Hayes GROWTHMODELING:STRUCTURALEQUATIONANDMULTILEVELMODELINGAPPROACHES KevinJ.Grimm,NilamRam,andRyneEstabrook PSYCHOMETRICMETHODS:THEORYINTOPRACTICE LarryR.Price INTRODUCTIONTOMEDIATION,MODERATION,ANDCONDITIONALPROCESSANALYSIS: AREGRESSION-BASEDAPPROACH,SECONDEDITION AndrewF.Hayes MEASUREMENTTHEORYANDAPPLICATIONSFORTHESOCIALSCIENCES DeborahL.Bandalos CONDUCTINGPERSONALNETWORKRESEARCH:APRACTICALGUIDE ChristopherMcCarty,MirandaJ.Lubbers,RaffaeleVacca,andJose´ LuisMolina QUASI-EXPERIMENTATION:AGUIDETODESIGNANDANALYSIS CharlesS.Reichardt THEORYCONSTRUCTIONANDMODEL-BUILDINGSKILLS:APRACTICALGUIDE FORSOCIALSCIENTISTS,SECONDEDITION JamesJaccardandJacobJacoby LONGITUDINALSTRUCTURALEQUATIONMODELINGWITHMplus: ALATENTSTATE–TRAITPERSPECTIVE ChristianGeiser COMPOSITE-BASEDSTRUCTURALEQUATIONMODELING: ANALYZINGLATENTANDEMERGENTVARIABLES Jo¨rgHenseler BAYESIANSTRUCTURALEQUATIONMODELING SarahDepaoli Bayesian Structural Equation Modeling .......................................................................... Sarah Depaoli Series Editor’s Note by Todd D. Little THE GUILFORD PRESS New York London © 2021TheGuilfordPress ADivisionofGuilfordPublications,Inc. 370SeventhAvenue,Suite1200,NewYork,NY10001 www.guilford.com Allrightsreserved Nopartofthisbookmaybereproduced,translated,storedinaretrieval system,ortransmitted,inanyformorbyanymeans,electronic,mechanical, photocopying,microfilming,recording,orotherwise,withoutwritten permissionfromthePublisher. PrintedintheUnitedStatesofAmerica Thisbookisprintedonacid-freepaper. Lastdigitisprintnumber: 9 8 7 6 5 4 3 2 1 LibraryofCongressCataloging-in-PublicationData Names: Depaoli,Sarah,author. / Title: Bayesianstructuralequationmodeling SarahDepaoli. | Description: NewYork,NY:TheGuilfordPress,2021. Series: Methodology | inthesocialsciences Includesbibliographicalreferencesandindex. | Identifiers: LCCN2021011543 ISBN9781462547746(cloth) | Subjects: LCSH:Bayesianstatisticaldecisiontheory. Social sciences–Statisticalmethods. | / Classification: LCCBF39.2.B39D462021 DDC150.1519542–dc23 // / LCrecordavailableathttps: lccn.loc.gov2021011543 ToMomandDad, whotaughtmetheonlylimitswefacearethoseweplaceonourselves And,tomyadorablefamily,Darrin,Andrew,andJacob Series Editor’s Note It’sfunnytomethatfolksconsideritachoicetoBayesornottoBayes. It’s ff truethatBayesianstatisticallogicisdi erentfromatraditionalfrequentist / logic,butit’snotreallyaneither orchoice. Inmyview,Bayesianthinking haspermeatedhowmostmodernmodelingofdataoccurs,particularlyin theworldofstructuralequationmodeling(SEM).Thatbeingsaid, having SarahDepaoli’sguidetoBayesianSEMisatruetreasureforallofus. Sarah literally guides us through all ways that a Bayesian approach enhances the power and utility of latent variable SEM. Accessible, practical, and extremely well organized, Sarah’s book opens a worldly window into the latentspaceofBayesianSEM. Although her approach does assume some familiarity with Bayesian concepts,shereviewsthefoundationalconceptsforthosewholearnedsta- tistical modeling under the frequentist rock. She also covers the essential elements of traditional SEM, ever foreshadowing the flexibility and en- hanced elements that a Bayesian approach to SEM brings. By the time you get to Chapter 5, on measurement invariance, I think you’ll be fully ff hookedonwhataBayesianapproacha ordsintermsofitspowerfulutility, and you won’t be daunted when you work through the remainder of the book. Aswithanystatisticaltechnique,learningthenotationinvolvedce- mentsyourunderstandingofhowitworks. IlovehowSarahseparatesthe necessarynotationelementsfromthepedagogyofwordsandexamples. Inmyview,Sarah’sbookwillbereceivedasaninstantclassicandago- toresourceforresearchersgoingforward. Withclearlydevelopedcodefor eachexample(inbothMplusandR),Sarahremovesthegauntletoflearning a challenging software package. She provides wonderful overviews of vii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.