ebook img

Bayesian Methods for the Physical Sciences: Learning from Examples in Astronomy and Physics PDF

245 Pages·2015·6.542 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bayesian Methods for the Physical Sciences: Learning from Examples in Astronomy and Physics

Springer Series in Astrostatistics Stefano Andreon Brian Weaver Bayesian Methods for the Physical Sciences Learning from Examples in Astronomy and Physics Springer Series in Astrostatistics Editor-in-chief:JosephM.Hilbe,JetPropulsionLaboratory,and ArizonaStateUniversity,USA JogeshBabu,ThePennsylvaniaStateUniversity,USA BruceBassett,UniversityofCapeTown,SouthAfrica SteffenLauritzen,OxfordUniversity,UK ThomasLoredo,CornellUniversity,USA OlegMalkov,MoscowStateUniversity,Russia Jean-LucStarck,CEA/Saclay,France DavidvanDyk,ImperialCollege,London,UK SpringerSeriesinAstrostatistics, Moreinformationaboutthisseriesathttp://www.springer.com/series/1432 Springer Series in Astrostatistics AstrostatisticalChallengesfortheNewAstronomy:ed.JosephM.Hilbe AstrostatisticsandDataMining:ed.LuisManuelSarro,LaurentEyer,William O’Mullane,JorisDeRidder StatisticalMethodsforAstronomicalDataAnalysis:byAsisKumarChattopadhyay &TanukaChattopadhyay Stefano Andreon • Brian Weaver Bayesian Methods for the Physical Sciences Learning from Examples in Astronomy and Physics 123 StefanoAndreon BrianWeaver INAF StatisticalSciences OsservatorioAstronomicodiBrera LosAlamosNationalLaboratory Milano,Italy LosAlamos,NM,USA ISSN2199-1030 ISSN2199-1049 (electronic) SpringerSeriesinAstrostatistics ISBN978-3-319-15286-8 ISBN978-3-319-15287-5 (eBook) DOI10.1007/978-3-319-15287-5 LibraryofCongressControlNumber:2015932855 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia(www. springer.com) Preface This book is a consultant’s guide for the researcher in astronomy or physics who is willing to analyze his (or her) own data by offering him (or her) a statistical background, some numerical advice, and a large number of examples of statisti- calanalysesofreal-worldproblems,manyfromtheexperiencesofthefirstauthor. Whilewritingthisbook,weplacedourselvesintheroleoftheresearcherwillingto analyzehis/herowndatabutlackingapracticalwaytodoit(infactoneofuswas thisonce).Forthisreason,wechoosetheJAGSsymboliclanguagetoperformthe Bayesianfitting,allowingus(theresearchers)tofocusontheresearchapplications, not on programming (coding) issues. By using JAGS, it is easy for the researcher totakeoneofthemanyapplicationspresentedinthisbookandmorphthemintoa formthatisrelevanttohisneeds.Morethan50examplesarelistedandareintended to be the starting points for the researchers, so they can develop the confidence to solvetheirownproblem.Allexamplesareillustratedwith(morethan100)figures showing the data, the fitted model, and its uncertainty in a way that researchers in astronomy and physics are used to seeing them. All models and datasets used in this book are made available at the site http://www.brera.mi.astro.it/∼andreon/ BayesianMethodsForThePhysicalSciences/. Thetopicsinthisbookincludeanalyzingmeasurementssubjecttoerrorsofdif- ferentamplitudesandwithalarger-than-expectedscatter,dealingwithupperlimits and with selection effects, modeling of two populations (one we are interested in andanuisancepopulation),regression(fitting)modelswithandwithouttheabove “complications” and population gradients, and how to predict the value of an un- available quantity by exploiting the existence of a trend with another, available, quantity. The book also provides some advice to answer the following questions: Is the considered model at odds with the fitted data? Furthermore, are the results constrained by the data or unduly affected by assumptions? These are the “bread andbutter”activitiesofresearchersinphysicsandastronomyandalsotoallthose analyzing and interpreting datasets in other branches as far as they are confronted withsimilarproblems(measurementerrors,varietyinthestudiedpopulation,etc.). Thebook alsoserves asaguide for(andhas been shaped thanks to)Ph.D.stu- dentsinthephysicalandspacesciences:bydedicating12hofstudyingthecontent v vi Preface ofthisbook,theaveragestudentisabletowritealoneandunsupervisedthecomplex modelsinChap.8(andindeedtheexampleinSect.8.2waswrittenbyastudent). Content Thebookconsistsoftenchapters.Afterashortdescriptiononhowtousethebook (Chap. 1), Chaps. 2 and 3 are a gentle introduction to the theory behind Bayesian methods and how to practically compute the target numbers (e.g., parameter esti- matesofthemodel).Inlaterchapters,wepresentproblemsofincreasingdifficulty with an emphasis on astronomy examples. Each application in the book has the same structure: it presents the problem, provides the data (listed in the text, or in the case of large datasets, a URL is provided) or shows how to generate the data, hasadetailedanalysisincludingquantitativesummariesandfigures(morethan100 figures), and provides the code used for the analysis (using again the open-source JAGSprogram).Theideaisthatthereaderhasthecapabilitytofullyreproduceour analysis. The provided JAGS code (of which the book contain over 50 examples) can be the starting point for a researcher applying Bayesian methods to different problems.Thekeysubjectofmodelcheckingandsensitivityanalysisisaddressed inChap.9.Lastly,Chap.10providessomecomparisonsoftheBayesianapproachto olderwaysofdoingstatistics(i.e.,frequentistmethods)inastronomyandphysics. Mostchaptersconcludewithasetofexercises.Anexercisesolutionbookisavail- ableatthesameURLgivenabove. ContactDetails Sendcommentsanderrorsfoundtoeitherstefano.andreon@brera.inaf.itortheguz@ lanl.gov.Updatedprogramsandanerratumarekeptathttp://www.brera.mi.astro.it/ ∼andreon/BayesianMethodsForThePhysicalSciences/. Acknowledgments SAthanksMerrileeHurnforhercollaborationsthatinspiredmuchofthecontentof thisbook,SteveGullforenjoyablediscussionsonthisbook’scontentandfortheuse ofhisofficeinCambridge(UK),JoeHilbeforencouragementstocontinuetheeffort of writing this book, Andrew Gelman for his reactiveness in answering questions, AndreaBenagliafortheexampleinSect.8.2,andGiulioD’Agostiniforcomputing theanalyticalexpressionoftheposteriorprobabilitydistributionforafewproblems of astronomical relevance. The practical way to summarize our knowledge about the quantity under study, more than philosophical debates, is maximally useful to researchers. BWthanksWilliamMeekerandMaxMorrisforteachinghimhowtobeaprac- ticalstatistician.HealsothanksMichaelHamada,AlysonWilson,andHarryMartz fortakingayoungfrequentistandopeninghiseyestothebeautyofBayesianstatis- tics,andDavidHigdonforteachinghimhowtohavefunbeingastatistician. Lastly,wethankourbeautifulwivesfortheirencouragementandsupport. Finally,awarmthanksgoestoMartinPlummerforJAGS,i.e.,thesoftwareused toperformthenumericalcomputationsofthisbook.TheeaseofuseofJAGSmade ourdailyresearchworkeasierandallowsustoeasilyexploreotherpossiblemodels andthesensitivityofourconclusionsto(unavoidable)assumptions. Contents 1 RecipesforaGoodStatisticalAnalysis ........................... 1 2 ABitofTheory ................................................ 3 2.1 Axiom1:ProbabilitiesAreintheRangeZerotoOne............. 3 2.2 Axiom2:WhenaProbabilityIsEitherZeroorOne.............. 3 2.3 Axiom3:TheSum,orMarginalization,Axiom ................. 4 2.4 ProductRule .............................................. 5 2.5 BayesTheorem ............................................ 5 2.6 ErrorPropagation .......................................... 7 2.7 BringingItAllHome ....................................... 8 2.8 ProfilingIsNotMarginalization .............................. 8 2.9 Exercises ................................................. 10 References..................................................... 13 3 ABitofNumericalComputation................................. 15 3.1 SomeTechnicalities ........................................ 17 3.2 HowtoSamplefromaGenericFunction ....................... 18 References..................................................... 20 4 SingleParameterModels ....................................... 21 4.1 Step-by-StepGuideforBuildingaBasicModel ................. 21 4.1.1 ALittleBitof(Science)Background.................... 21 4.1.2 BayesianModelSpecification.......................... 22 4.1.3 ObtainingthePosteriorDistribution..................... 22 4.1.4 BayesianPointandIntervalEstimation .................. 23 4.1.5 CheckingChainConvergence.......................... 24 4.1.6 ModelCheckingandSensitivityAnalysis................ 25 4.1.7 ComparisonwithOlderAnalyses....................... 25 4.2 OtherUsefulDistributionswithOneParameter.................. 26 4.2.1 MeasuringaRate:Poisson ............................ 26 vii viii Contents 4.2.2 CombiningTwoorMore(Poisson)Measurements ........ 28 4.2.3 MeasuringaFraction:Binomial ........................ 28 4.3 Exercises ................................................. 32 References..................................................... 34 5 ThePrior ..................................................... 35 5.1 ConclusionsDependonthePrior.............................. 35 5.1.1 ...SometimesaLot:TheMalmquist-EddingtonBias ...... 35 5.1.2 ...byLowerAmountswithIncreasingDataQuality....... 37 5.1.3 ...butEventuallyBecomesNegligible .................. 39 5.1.4 ...andthePreciseShapeofthePriorOften DoesNotMatter..................................... 40 5.2 WheretoFindPriors........................................ 41 5.3 WhyThereAreSoManyUniformPriorsinthisBook?........... 42 5.4 OtherExamplesontheInfluenceofPriorsonConclusions ........ 42 5.4.1 TheImportantRoleofthePriorintheDeterminationof theMassoftheMostDistantKnownGalaxyCluster....... 42 5.4.2 TheImportanceofPopulationGradientsforPhotometric Redshifts ........................................... 44 5.5 Exercises ................................................. 47 References..................................................... 49 6 Multi-parametersModels ....................................... 51 6.1 CommonSimpleProblems................................... 51 6.1.1 LocationandSpread.................................. 51 6.1.2 TheSourceIntensityinthePresenceofaBackground ..... 54 6.1.3 EstimatingaFractioninthePresenceofaBackground..... 59 6.1.4 SpectralSlope:HardnessRatio......................... 62 6.1.5 SpectralShape ...................................... 64 6.2 Mixtures.................................................. 67 6.2.1 ModelingaBimodalDistribution:TheCaseofGlobular ClusterMetallicity ................................... 67 6.2.2 AverageofIncompatibleMeasurements ................. 73 6.3 AdvancedAnalysis ......................................... 75 6.3.1 SourceIntensitywithOver-PoissonBackground Fluctuations......................................... 75 6.3.2 The Cosmological Mass Fraction Derived from the Cluster’sBaryonFraction ............................. 77 6.3.3 LightConcentrationinthePresenceofaBackground ...... 80 6.3.4 AComplexBackgroundModelingforGeo-Neutrinos ..... 82 6.3.5 UpperLimitsfromCountingExperiments ............... 89 6.4 Exercises ................................................. 92 References..................................................... 96 Contents ix 7 Non-randomDataCollection .................................... 99 7.1 TheGeneralCase ..........................................100 7.2 SharpSelectionontheValue .................................102 7.3 SharpSelectionontheValue,MixtureofGaussians:Measuring theGravitationalRedshift....................................103 7.4 SharpSelectionontheTrueValue.............................106 7.5 ProbabilisticSelectionontheTrueValue.......................109 7.6 SharpSelectionontheObservedValue,MixtureofGaussians .....111 7.7 NumericalImplementationoftheModels ......................113 7.7.1 SharpSelectionontheValue...........................113 7.7.2 SharpSelectionontheTrueValue ......................114 7.7.3 ProbabilisticSelectionontheTrueValue ................116 7.7.4 Sharp Selection on the Observed Value, Mixture of Gaussians ..........................................117 7.8 FinalRemarks .............................................118 Reference......................................................119 8 FittingRegressionModels.......................................121 8.1 ClearingUpSomeMisconceptions............................121 8.1.1 PayAttentiontoSelectionEffects ......................121 8.1.2 AvoidFishingExpeditions ............................123 8.1.3 DoNotConfusePredictionwithParameterEstimation.....124 8.2 Non-linear Fit with No Error on Predictor and No Spread: EfficiencyandCompleteness.................................128 8.3 FitwithSpreadandNoErrorsonPredictor:VaryingPhysical Constants? ................................................131 8.4 FitwithErrorsandSpread:TheMagorrianRelation .............134 8.5 FitwithMoreThanOnePredictorandaComplexLink:Star FormationQuenching.......................................137 8.6 FitwithUpperandLowerLimits:TheOptical-to-XFluxRatio ....141 8.7 FitwithAnImportantDataStructure:The Mass-RichnessScaling......................................146 8.8 FitwithaNon-ignorableDataCollection.......................149 8.9 FitWithoutAnxietyAboutNon-randomDataCollection .........154 8.10 Prediction.................................................159 8.11 AMeta-Analysis:CombinedFitofRegressionswithDifferent IntrinsicScatter ............................................165 8.12 AdvancedAnalysis .........................................168 8.12.1 CosmologicalParametersfromSNIa....................168 8.12.2 TheEnrichmentHistoryoftheICM.....................175 8.12.3 TheEnrichmentHistoryAfterBinningbyRedshift........181 8.12.4 WithAnOver-PoissonsSpread.........................182 8.13 Exercises .................................................186 References.....................................................189

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.