ebook img

Bayesian analysis of competing risks models PDF

111 Pages·1999·4.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bayesian analysis of competing risks models

BAYESIANANALYSISOFCOMPETINGRISKSMODELS By CHEN-PINWANG ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1999 ©Copyright1999 by Chen-PinWang Tomyfamily ACKNOWLEDGMENTS IwouldliketoexpressmydeepestgratitudetoDr.MalayGhosh,withoutwhom thisworkwouldneverhavebeencompleted. Hewasalwayswillingtogivemeguid- ance,knowledge,andfriendshipwhenitwasneeded. Iwouldalsoliketothankmy committeemembers, Dr. RandolphCarter, Dr. AndrewRosalsky, Dr. MarkYang, andDr.YumeiChen,forsupportingmyresearch. Additionally,thecollectiveknowl- edgeandexperienceofmyfellowstudentsandmembersofthefacultyneverfailedto inspireandencouragemeduringthecompletionofmywork. Iwouldliketoespecially thankDr.RomanLittelforbeingwillingtohelpmebeyondstatistics. Finally,Iwouldliketothankmyfamily,fortheirloveandsupport,bothfinancial andemotional. IwouldespeciallyliketothankmybestfriendinGainesville, F.J. Huang,whoputupwithmeandconstantlyencouragedmeduringthecompletionof mydoctoralwork,withoutwhomthisworkwouldhaveneverbeenfinished. IV TABLEOFCONTENTS ACKNOWLEDGMENTS iv LISTOFTABLES vii LISTOFFIGURES viii ABSTRACT ix CHAPTERS 1 LITERATUREREVIEW 1 1.1 Introduction 1 1.2 CompetingRisks 2 1.3 BivariateLifetimeDistributions 5 1.4 NoninformativePriors 19 1.5 ResearchProposal 23 2 BAYESIANANALYSISOFSELECTEDBIVARIATE EXPONENTIALMODELS 25 2.1 Introduction 25 2.2 Notation 26 2.3 NoninformativePriorModification 27 2.4 BayesianAnalysisforMarshall-OlkinBVE 29 2.5 BayesianAnalysisfortheACBVEModels 32 2.6 PriorPerformance 37 2.7 IdentifiableACBVEviaInformativePriors 48 3 BAYESIANANALYSISOFGENERALIZEDBIVARIATE EXPONENTIALMODELS 51 3.1 Introduction 51 3.2 GeneralizedBVEModels 52 3.3 GeneralizationofACBVEModels 53 3.4 GeneralizationoftheMarshall-OlkinBVEModel 59 3.5 ApplicationtoaSamplewithCategoricalCovariates 62 v 3.6 SamplingSchemes 65 3.7 IllustratedExamples 67 4 GEOMETRICCOMPETINGRISKSMODELS 78 4.1 Introduction 78 4.2 GeneralizedGeometricModelsandLikelihoodFunctions 79 4.3 BayesianAnalysis 83 4.4 ApplicationtoaSamplewithCategoricalCovariates 88 4.5 DataAnalysis 90 5 SUMMARYANDFUTURERESEARCH 94 APPENDIX PROOFSOFMATCHINGPROPERTIESOFnJVANDnj 95 REFERENCES 96 BIOGRAPHICALSKETCH 100 vi LISTOFTABLES Table Page 2.1 ReferencePriorsfortheMarshall-OlkinBVE 31 2.2 PosteriorDistributionsfortheMarshall-OlkinBVE 32 2.3 TheACBVEReparameterization 33 2.4 PosteriorDistributionsforAandpofACBVE’s 36 2.5 PosteriorDistributions(Moments)for0ofACBVE’s 36 2.6 FrequentistCoverageProbabilitiesforAunder7rjj,nuu,kj,kju 39 2.7 NumericalSimulationResultsofTable2.6 39 2.8 PosteriorEstimatesfor<j>ofACBVE’sunderBetaPriors 49 3.1 ProbabilityMatchingforA_1(l,0.5)'undernju,/kuu irj,Tru 68 , 3.2 ProbabilityMatchingforA_1(l,0.5,2)'underttju,ttuu,txj, 69 3.3 ECOGPosteriorEstimatesunderMainEffectModelandiruu 73 3.4 ECOGPosteriorEstimatesunderInteractionModelandnju,t^uu • 75 3.5 PosteriorEstimatesforContrastsofInterestundernuu(orkju) •••• 77 4.1 StochasticTransitionStatus 80 4.2 ComparisonofPosteriorEstimatesforP(A=1|T^=1) 90 vii j 77 LISTOFFIGURES Figure Page 2.1 TransformedQ-QPlotsfor(f)under^tj7 andn=10 42 2.2 TransformedQ-QPlotsfor4>undern 777,andn=50 43 2.3 TransformedQ-QPlotsfpr<f>under7tj777,andn=100 44 2.4 TransformedQ-QPlotsforpundernj,7 /,andn—10 45 2.5 TransformedQ-QPlotsforpunder7tj,7 /,andn=50 46 2.6 TransformedQ-QPlotsforpunderttj,777,andn—100 47 2.7 BetaPriorsandtheAssociatedPosteriorsof<pundern=10,50 50 3.1 R’sandPosteriorDensitiesof(3i,fa,fa,andfaunder7tjju 71 3.2 R'sandPosteriorDensitiesof71(j2,73,and74under7Tuu 72 3.3 Analysis1: Goodness-of-fitPlotsforTj’sandAj’sunderBVE 74 3.4 Analysis2: Goodness-of-fitPlotsforTj’sandAj’sunderBVE 76 4.1 BayesianGoodness-of-FitPlotforn^’s 91 4.2 SurvivalCurvesforTundertheACBVEandtheGEM 92 viii AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillment oftheRequirementsfortheDegreeof DoctorofPhilosophy BAYESIANANALYSISOFCOMPETINGRISKSMODELS By Chen-PinWang August1999 Chairman: MalayGhosh MajorDepartment: Statistics Bivariate exponential (BVE) models have been widely used in the analysis of competingrisksdatainvolvingtworiskcomponents. Forsuchanalysis,frequentist approachoftenrunsintodifficultyduetononidentifiablelikelihood. Withanendto overcomethenonindentifiability,recentliteraturehasbeengearedtowardsBayesian analysiswithinformativepriors. However,systematicpriorelicitationisoftendiffi- cult. ThisstudyfocusesinsteadonBayesiananalysiswithnoninformativepriors. DuetothenatureofthecompetingrisksdataandBVEmodelstructure,quite oftenitleadsalikelihoodfunctionwithanonregularFisherinformationmatrixim- pedingthereby thecalculation ofstandard noninformative priorssuch as Jeffreys’ priorsandtheirvariants. Asaremedy,astagewisenoninformativepriorelicitation strategyisproposed. Avarietyofnoninformativepriorsaredeveloped,andareused fordataanalysis. Inaddition,thefrequentistprobabilitymatchingcriteriaareinves- tigatedamongthenewlydevelopednoninformativepriors. Oftenduetoresourcelimitationorothereconomicandpracticalreasons,individ- ualsareonlyperiodicallyscreened. Theresultingcompetingrisksdataarenecessarily discrete. Aclassofflexiblemodelsisintroducedtohandlesuchdiscretizeddata. IX CHAPTER 1 LITERATUREREVIEW 1.1 Introduction Ofteninalife-testingsituation,failureofanindividualcanbeidentifiedasone ormoreofs (s > 1) mutuallyexclusive, butpossiblydependent causesoffailure. Inotherwords,eachindividualissubjecttosdistinctrisksreferredtoascompeting risksthreateningitslife. Associatedwithcausei,thereisanonnegativeabsolutely continuous random variable representingthe lifetime ofan individual when no otherpotentialrisksarepresent. Supposethattheterminationtimeofanindividual isdefinedasthetimetothefirstfailure. Thus,lifetimeofanindividualisgivenbyT= min{T!,••-Ts}. Theavailableinformationisusuallygivenbythepair(T,/),where /indicatesthecause(s) offailure. Thecompetingrisksconceptcanappropriately be applied to many areas ofstudy, such as industrial reliability analysis, market transactionanalysis,andclinicaltrialonpairedorgans. OurmaingoalistouseBayesianmethodologyformakingstatisticalinferencein competingrisksmodelstostudycertainlifetimefeaturesofinterestandthecovariate effectsontheunderlyingsurvivalfunctions. Thefirststepisnecessarilymultivariate lifetime modeling. Intheone-dimensionalcase, theWeibulldistribution hasbeen consideredasthemostflexibleoneforlifetimemodelingsinceitaccommodatesthree majortypesoffailurerates: agingtype,decayingtype,andconstanttype. Anatural extensiontomultidimensionallifetimemodelingwouldbethemultivariateWeibull model. Animportantspecialcaseisthemultivariateexponentialdistribution. When the shape parameters are known, then one can make a power transformation on 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.