Esra Bas Basics of Probability and Stochastic Processes Basics of Probability and Stochastic Processes Esra Bas Basics of Probability and Stochastic Processes 123 EsraBas Industrial Engineering Istanbul TechnicalUniversity Istanbul,Turkey ISBN978-3-030-32322-6 ISBN978-3-030-32323-3 (eBook) https://doi.org/10.1007/978-3-030-32323-3 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This book is aimed as a textbook for one-semester course in Introduction to Probability and Stochastic Processes to be taught at engineering schools at the undergraduate level. Since I teach this topic to students with different engineering majors, I thought a book at a very basic level without theoretical details would be beneficial. It is organized so that the students with no prior knowledge can learn about the basic concepts of probability and stochastic processes in a step-by-step manner and get insights by reading numerous remarks and warnings. All the examplesandproblemsaresolvedstep-by-stepbyassumingthatthestudentshave only basic calculus knowledge. The chapters include some basic examples, which are revisited as a new concept is introduced. Since I believe that engineering students can acquire knowledge by visual means more easily, I added several figures and diagrams to facilitate the comprehension of the basic concepts and the solutionsoftheexamplesandproblems.Ialsousedatableformatwhererelevantso that the concepts and formulae can be understood in comparison with each other. Thistableformatisalsointendedtoserveasasummaryofcrucialformulae.Itried tokeepeachchaptersimplewithafewsub-chaptersandindependentfromtheother chapters. Thisbookhastwomainparts.Inthefirstmainpartofthisbook,thereaderscan get familiar with the basics of probability including combinatorial analysis, con- ditional probability, discrete and continuous random variables, and other selected topics in probability including jointly distributed random variables, while in the second main part of this book, they learn the basics of stochastic processes including point process, counting process, renewal process, regenerative process, Poissonprocess,Markovchains,queueingmodelsandreliabilitytheory.Thetopics are presented from broad to detailed levels. As an example, Chap. 4 is devoted to “IntroductiontoRandomVariables”,whichprovidesthebasicsthatarerelevantto both discrete and continuous random variables. However, the readers can learn more about “Discrete Random Variables” and “Continuous Random Variables” in Chaps. 5 and 6, respectively. As another example, Chap. 9 is devoted to “A Brief Introduction to Point Process, Counting Process, Renewal Process, Regenerative Process, Poisson Process”. In this chapter, the readers can understand the basic v vi Preface relations between these basic subjects. Afterwards, the interested readers can also learn more about Poisson Process and Renewal Process in Chaps. 10 and 11, respectively. I deliberately included only basic concepts in each chapter. As an example,onlybirthanddeathqueueingmodelsareprovidedinChap. 15,sincethe emphasis of this book is on the concepts at a very basic level. Although the primary audience of this book is all engineering students at the undergraduate level, the graduate students who want to refresh their basic knowl- edge about probability and stochastic processes can also use this book as a review before starting with the course stochastic processes at the graduate level. Since I havealsobeenteachingthistopicatthegraduatelevel,theimportanceofrecalling the basic concepts has been very clear to me based on my teaching experiences. Istanbul, Turkey Esra Bas Contents Part I Basics of Probability 1 Combinatorial Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 The Basic Principle of Counting and the Generalized Basic Principle of Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Combinatorial Analysis (Combinatorics) . . . . . . . . . . . . . . . . . 5 2 Basic Concepts, Axioms and Operations in Probability . . . . . . . . . 15 2.1 Basic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Axioms of Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Basic Operations in Set Theory Versus Basic Operations in Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Conditional Probability, Bayes’ Formula, Independent Events. . . . 27 3.1 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Bayes’ Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Independent Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Introduction to Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Basic Parameters for the Discrete and Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5 Discrete Random Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1 Special Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . 55 5.2 Basic Parameters for Special Discrete Random Variables . . . . . 59 6 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.1 Special Continuous Random Variables. . . . . . . . . . . . . . . . . . . 71 6.2 Basic Parameters for Special Continuous Random Variables . . . 83 vii viii Contents 7 Other Selected Topics in Basic Probability. . . . . . . . . . . . . . . . . . . 95 7.1 Jointly Distributed Random Variables . . . . . . . . . . . . . . . . . . . 96 7.2 Conditional Distribution, Conditional Expected Value, Conditional Variance, Expected Value by Conditioning, Variance by Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.3 Moment Generating Function and Characteristic Function. . . . . 108 7.4 Limit Theorems in Probability. . . . . . . . . . . . . . . . . . . . . . . . . 110 Part II Basics of Stochastic Processes 8 A Brief Introduction to Stochastic Processes. . . . . . . . . . . . . . . . . . 125 9 A Brief Introduction to Point Process, Counting Process, Renewal Process, Regenerative Process, Poisson Process . . . . . . . . 131 9.1 Point Process, Counting Process . . . . . . . . . . . . . . . . . . . . . . . 132 9.2 Renewal Process, Regenerative Process . . . . . . . . . . . . . . . . . . 134 9.3 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 10 Poisson Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 10.1 Homogeneous Versus Nonhomogeneous Poisson Process . . . . . 149 10.2 Additional Properties of a Homogeneous Poisson Process. . . . . 153 11 Renewal Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.1 Basic Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.2 Limit Theorem, Elementary Renewal Theorem, Renewal Reward Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 11.3 Regenerative Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 12 An Introduction to Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . 179 12.1 Basic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 12.2 TransitionProbabilityMatrix,MatrixofTransitionProbability Functions, Chapman-Kolmogorov Equations . . . . . . . . . . . . . . 181 12.3 Communication Classes, Irreducible Markov Chain, Recurrent Versus Transient States, Period of a State, Ergodic State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 12.4 Limiting Probability of a State of a Markov Chain . . . . . . . . . . 189 13 Special Discrete-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . 199 13.1 Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 13.2 Branching Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 13.3 Hidden Markov Chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 13.4 Time-Reversible Discrete-Time Markov Chains . . . . . . . . . . . . 205 13.5 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 14 Continuous-Time Markov Chains. . . . . . . . . . . . . . . . . . . . . . . . . . 217 14.1 Continuous-Time Markov Chain and Birth & Death Process. . . 218 14.2 Birth & Death Queueing Models. . . . . . . . . . . . . . . . . . . . . . . 221 Contents ix 14.3 Kolmogorov’s Backward/Forward Equations, Infinitesimal Generator Matrix of a CTMC and Time-Reversibility of a CTMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 15 An Introduction to Queueing Models . . . . . . . . . . . . . . . . . . . . . . . 233 15.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 15.2 Balance Equations and Little’s Law Equations for B&D Queueing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 16 Introduction to Brownian Motion. . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.1 Basic Properties of a Brownian Motion . . . . . . . . . . . . . . . . . . 253 16.2 Other Properties of a Brownian Motion . . . . . . . . . . . . . . . . . . 256 17 Basics of Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 17.1 Martingale, Submartingale, Supermartingale, Doob Type Martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 17.2 Azuma-Hoeffding Inequality, Kolmogorov’s Inequality, the Martingale Convergence Theorem . . . . . . . . . . . . . . . . . . . 269 18 Basics of Reliability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 18.1 Basic Definitions for a Nonrepairable Item. . . . . . . . . . . . . . . . 274 18.2 Basic Definitions for a Repairable Item . . . . . . . . . . . . . . . . . . 278 18.3 Systems with Independent Components . . . . . . . . . . . . . . . . . . 280 18.4 Systems with Dependent Components . . . . . . . . . . . . . . . . . . . 284 Area Under the Standard Normal Curve to the Left of z ... ..... .... 293 References.... .... .... .... ..... .... .... .... .... .... ..... .... 297 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 299 Part I Basics of Probability