Undergraduate Texts in Physics Kyriakos Tamvakis Basic Quantum Mechanics Undergraduate Texts in Physics Series Editors Kurt H. Becker, NYU Polytechnic School of Engineering, Brooklyn, NY, USA Jean-Marc Di Meglio, Matière et Systèmes Complexes, Université Paris Diderot, Bâtiment Condorcet, Paris, France SadriD.Hassani,DepartmentofPhysics,LoomisLaboratory,UniversityofIllinois at Urbana-Champaign, Urbana, IL, USA Morten Hjorth-Jensen, Department of Physics, Blindern, University of Oslo, Oslo, Norway Michael Inglis, Patchogue, NY, USA Bill Munro, NTT Basic Research Laboratories, Optical Science Laboratories, Atsugi, Kanagawa, Japan Susan Scott, Department of Quantum Science, Australian National University, Acton, ACT, Australia Martin Stutzmann, Walter Schottky Institute, Technical University of Munich, Garching, Bayern, Germany UndergraduateTextsinPhysics(UTP)publishesauthoritativetextscoveringtopics encountered in aphysicsundergraduate syllabus.Eachtitle intheseriesissuitable as an adopted text for undergraduate courses, typically containing practice problems, worked examples, chapter summaries, and suggestions for further reading.UTPtitlesshouldprovideanexceptionallyclearandconcisetreatmentofa subject at undergraduate level, usually based on a successful lecture course. Core and elective subjects are considered for inclusion in UTP. UTPbookswillbeidealcandidatesforcourseadoption,providinglecturerswith a firm basis for development of lecture series, and students with an essential reference for their studies and beyond. More information about this series at http://www.springer.com/series/15593 Kyriakos Tamvakis Basic Quantum Mechanics 123 Kyriakos Tamvakis Department ofPhysics University of Ioannina Ioannina, Greece ISSN 2510-411X ISSN 2510-4128 (electronic) Undergraduate Texts inPhysics ISBN978-3-030-22776-0 ISBN978-3-030-22777-7 (eBook) https://doi.org/10.1007/978-3-030-22777-7 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To my daughters Anna and Maria Preface This textbook on Quantum Mechanics has been designed for use in two-semester undergraduatecoursesandasasupplementaltextbookingraduatecourses.Itistrue that there are many excellent books on the subject, like the classic examples of Baym,Gottfried,Messiah,orSchiff,which,althoughwrittenhalfacenturyago,are stillfittocovermostofthebasicmaterial.Nevertheless,newtopicshaveenteredinto therealmofinterestofthepresent-daystudentofphysicsthathavetobeincludedin the basic material. In addition to that, each new book represents a challenge in the selection of topics, in the emphasis on each of them and the overall organization ofthematerial,whichistoalargeextentsubjective.Thepresentbookhascomeout asaresultofteachingQuantumMechanicssince1982attheUniversityofIoannina. It aims to describe the basic concepts of Quantum Mechanics, to explain the use ofthemathematicalformalismandtoprovideillustrativeexamplesofbothconcepts and methods. In that sense, its purpose is quite conventional as to the training of physicsstudents.Althoughitisintendedtoprovideamasteryoftheuseofquantum mechanics as a tool, it also provides some discussion on the meaning of quantum concepts, despite the fact that no general consensus as to what its fundamental principles mean has been reached. After a brief discussion of the basic features of Quantum Mechanics in the framework of a simplified version of the two-slit experiment,thereaderisintroducedtotheSchroedingerequationandisfamiliarized withitsapplicationonanumberofsimpleone-dimensionalsystems.Thefollowing chaptersintroducethefullmathematicalformalismandbasicpostulatesofQuantum Mechanics.Furtherapplicationsfollowonanumberofsimplesystemsamongwhich two-statesystems,the one-dimensionallattice,periodicpotentials,etc.Thefollowing chaptersaredevotedtoangularmomentumandspin.Next,three-dimensionalsystems are considered with a number of applications in central potentials. The following chaptersdealwithmany-particlesystems,atoms,andmolecules.Achapteronparticle interactionswithanexternalelectromagneticfieldisdevotedtoLandaulevelsandthe Bohm–Aharonov phenomena. The next chapter on approximation methods includes theWKBmethod,theadiabaticapproximation,variationalmethods,andperturbation theory with a number of applications. A chapter on symmetries deals with rotations, tensor operators, and the Wigner–Eckart theorem, discrete symmetries as well as vii viii Preface dynamical symmetries. Scattering theory is considered next with a number of appli- cations. A chapter on quantum behavior deals with the measurement process, the conceptsofmixedstatesanddensitymatrices,entanglement,theEPRissue,andBell’s theorem.Next,achapterisdevotedtothequantizationoftheelectromagneticfieldand its interactionwith matter. Finally,the last chapter consists ofan introduction on the pathintegralformulationofQuantumMechanics. It is important to stress that the material of this book should not be approached passively, a very important factor in the learning process being the initiative exercised by the prospecting student. To this end, apart from about 60 worked out examples within each chapter, there are around 200 problems and exercises at the endofeachchapter,whichcanbequitehelpful,ifnotnecessary,towardsachieving a command of the subject. Ioannina, Greece Kyriakos Tamvakis Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 A Thought Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The de Broglie Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 The Wave Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 A Free Particle of Definite Momentum. . . . . . . . . . . . . . . . . . 8 1.5 The Schroedinger Equation for a Free Particle . . . . . . . . . . . . 11 1.6 Wave Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 The Schroedinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 The Fundamental Time-Evolution Equation . . . . . . . . . . . . . . 19 2.2 Conservation of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 The Hamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Stationary States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 General Solution of the Schroedinger Equation. . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Some Simple Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 The Infinite Square Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Piecewise Constant Potentials . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 The One-Dimensional Potential Step . . . . . . . . . . . . . 38 3.2.2 The Square Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.3 The Square Well . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.4 The Delta Function Potential. . . . . . . . . . . . . . . . . . . 52 3.2.5 Scattering by Two Delta Functions and Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4 Physical Observables as Operators . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1 Physical Quantities and Operators . . . . . . . . . . . . . . . . . . . . . 63 4.2 Eigenvalues and Eigenfunctions. . . . . . . . . . . . . . . . . . . . . . . 65 ix x Contents 4.3 Hermitian Conjugation and Hermitian Operators. . . . . . . . . . . 67 4.4 Physical Observables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6 The Heisenberg Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7 Commuting Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.8 Time Evolution of Expectation Values . . . . . . . . . . . . . . . . . . 77 4.9 Ehrenfest’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.10 The Virial Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Basic Principles of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . 85 5.1 Basic Postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 The Hilbert Space of States . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Operators in the Hibert Space . . . . . . . . . . . . . . . . . . . . . . . . 91 5.4 General Proof of the Heisenberg Inequality . . . . . . . . . . . . . . 97 5.5 The Position and Momentum Representations. . . . . . . . . . . . . 99 5.6 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.1 The Time-Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 The Schroedinger Versus the Heisenberg Picture . . . . . . . . . . 108 6.3 The Time–Energy Uncertainty Relation . . . . . . . . . . . . . . . . . 111 6.4 The Interaction Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.5 Time-Ordered Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7 Some More Simple Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.1 The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.1.1 Energy Eigenvalues of the Harmonic Oscillator . . . . . 122 7.1.2 The fxg Versus the fNg Representation . . . . . . . . . . 126 7.1.3 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2 The Ammonia Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.3 The One-Dimensional Lattice. . . . . . . . . . . . . . . . . . . . . . . . . 144 7.4 Periodic Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 7.5 Other Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 8 Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.1 Angular Momentum as a Quantum Observable. . . . . . . . . . . . 161 8.2 Central Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 8.3 The Angular Momentum in the fxg Representation. . . . . . . . . 164 8.4 Angular Momentum and Rotations. . . . . . . . . . . . . . . . . . . . . 166 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171