Basic Fracture Mechanics and its Applications This textbook provides a comprehensive guide to fracture mechanics and its appli- cations, providing an in-depth discussion of linear elastic fracture mechanics and a brief introduction to nonlinear fracture mechanics. It is an essential companion to the study of several disciplines such as aerospace, biomedical, civil, materials and mechanical engineering. This interdisciplinary textbook is also useful for profes- sionals in several industries dealing with design and manufacturing of engineering materials and structures. Beginning with four foundational chapters, discussing the theory in depth, the book also presents specific aspects of how fracture mechanics is used to address fatigue crack growth, environment assisted cracking, and creep and creep-fatigue crack growth. Other topics include mixed-mode fracture and materials testing and selection for damage tolerant design, alongside in-depth discussions of ensuring structural integrity of components through real-world examples. There is a strong focus throughout the book on the practical applications of fracture mechanics. It provides a clear description of the theoretical aspects of fracture mechanics and also its limitations. Appendices provide additional background to ensure a comprehensive understanding and every chapter includes solved example problems and unsolved end of chapter problems. Additional instructor support materials are also available. Basic Fracture Mechanics and its Applications Ashok Saxena First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2023 Ashok Saxena Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf. co.uk Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Names: Saxena, A. (Ashok), author. Title: Basic fracture mechanics and its applications / Ashok Saxena. Description: First edition. | Boca Raton : CRC Press, [2023] | Includes bibliographical references and index. | Identifiers: LCCN 2022034759 (print) | LCCN 2022034760 (ebook) | ISBN 9781032267197 (hardback) | ISBN 9781032273259 (paperback) | ISBN 9781003292296 (ebook) Subjects: LCSH: Fracture mechanics. Classification: LCC TA409 .S2896 2023 (print) | LCC TA409 (ebook) | DDC 620.1/126–dc23/eng/20221004 LC record available at https://lccn.loc.gov/2022034759 LC ebook record available at https://lccn.loc.gov/2022034760 ISBN: 9781032267197 (hbk) ISBN: 9781032273259 (pbk) ISBN: 9781003292296 (ebk) DOI: 10.1201/9781003292296 Typeset in Times by codeMantra Access the Support Material: https://www.routledge.com/9781032267197 Contents Preface.......................................................................................................................xi Author ......................................................................................................................xv Chapter 1 Fracture in Structural Components ......................................................1 1.1 Fracture in Engineering Materials and Structures: Societal Relevance .....................................................................1 1.1.1 S afety Assessments ......................................................1 1.1.2 Environment and Health Hazards ................................2 1.1.3 Optimizing Costs (Fuel Economy, Material Costs, Opportunity Costs) ............................................2 1.1.4 P roduct Liability ...........................................................2 1.2 Examples of Prominent Fractures and the Underlying Causes ........................................................................................3 1.2.1 Failures in Liberty Ships ..............................................3 1.2.2 Failures of Comet Aircraft ...........................................4 1.2.3 Cracks in A380 Aircrafts .............................................5 1.2.4 Crack in a Structural Member of an Interstate Highway Bridge ............................................................5 1.2.5 Cracks in Human Bones ...............................................6 1.2.6 Aneurysms in Human Abdominal Aortas ...................6 1.3 Degradation Phenomena and Fracture in Engineering Materials and Structures ...........................................................8 1.3.1 Crack Initiation/Formation and Growth ......................8 1.4 History of Developments in Understanding Fatigue and Fracture ......................................................................................9 1.4.1 Developments in Understanding of Fatigue .................9 1.4.2 Understanding Brittle and Ductile Fracture ...............11 1.4.3 Early Developments in Fracture Mechanics ..............12 1.4.4 Developments in Elastic-Plastic Fracture Mechanics...................................................................15 1.4.5 Environment Assisted Cracking .................................16 1.4.6 Developments in Time Dependent Fracture Mechanics...................................................................16 1.5 Summary .................................................................................17 References ..........................................................................................18 Chapter 2 Early Theories of Fracture .................................................................19 2.1 Microscopic Aspects of Brittle Fracture .................................19 2.1.1 Intergranular and Transgranular Fracture ..................19 v vi Contents 2.1.2 Equi-Cohesive Temperature .......................................21 2.1.3 D uctile and Brittle Fracture .......................................21 2.2 Models of Fracture at the Atomic Scale ..................................22 2.3 Stress Concentration Effects of Flaws .....................................24 2.4 Griffith’s Theory of Brittle Fracture ........................................26 2.5 Orowan’s Modification to Griffith’s Theory ............................28 2.6 The Concept of Crack Extension Force, G ..............................29 2.6.1 Estimation of Griffith’s Crack Extension Force for an Arbitrary Shaped Body ....................................30 2.7 Crack Growth Resistance, R ....................................................34 2.8 Predicting Instability in Cracked Structures ...........................34 2.8.1 P redicting Instability Conditions for a General Case ...40 2.9 Summary .................................................................................41 References ..........................................................................................42 Homework Problems ..........................................................................42 Appendix 2A: Review of Solid Mechanics ........................................43 2A.1 Stress ..........................................................................43 2A.2 Strain ..........................................................................47 2A.3 Elasticity .....................................................................48 2A.4 Elastic Strain Energy ..................................................49 2A.5 Stress Transformation Equations ...............................50 2A.6 Stress–Strain Behavior ...............................................51 Notes ...................................................................................................52 Chapter 3 Theoretical Basis for Linear Elastic Fracture Mechanics ..................53 3.1 Engineering Materials and Defects .........................................53 3.2 Stress Analysis of Cracks ........................................................54 3.2.1 Equations of Elasticity ...............................................55 3.2.2 C ompatibility Equations .............................................55 3.2.3 Application of Airy’s Stress Function to Crack Problems .....................................................................57 3.3 Stress Intensity Parameter, K, for Various Crack Geometries and Loading Configurations by the Westergaard Method ................................................................60 3.4 Crack Tip Displacement Fields ................................................66 3.5 The Relationship between G and K .........................................66 3.6 Determining K for Other Loading and Crack Geometries......69 3.7 Use of Linear Superposition Principle for Deriving K-Solutions ..............................................................................73 3.8 K -Solutions for 3-D Cracks .....................................................76 3.9 Summary .................................................................................81 References ..........................................................................................83 Homework Problems ..........................................................................83 Appendix 3A ......................................................................................84 3A.1 Cauchy–Reimann Equations ......................................84 3A.2 Derivation of the Crack Tip Displacement Fields ......85 Contents vii Chapter 4 Crack Tip Plasticity ............................................................................89 4.1 Estimate of the Plastic Zone Size ............................................89 4.2 Plasticity Modified Crack Tip Stress Field for SSY ................92 4.3 P lastic Zone Shape ..................................................................95 4.4 Crack Tip Opening Displacement (CTOD) .............................97 4.5 Summary .................................................................................97 References ..........................................................................................98 Homework Problems ..........................................................................98 Appendix 4A: Plastic Yielding Under Uniaxial and Multiaxial Conditions .........................................................................99 4A.1 Uniaxial Stress–Strain Curve.....................................99 4A.2 Von Mises Yield Criterion for Multiaxial Loading .....99 4A.3 Tresca Yield Criterion ..............................................100 Chapter 5 Fracture Toughness and its Measurement ........................................101 5.1 Similitude and the Stress Intensity Parameter, K ..................103 5.2 Fracture Toughness as a Function of Plate Thickness...........105 5.3 Ductile and Brittle Fracture and the LEFM Approach .........107 5.4 M easurement of Fracture Toughness ....................................108 5.4.1 Measurement of Plane Strain Fracture Toughness, K ..........................................................108 Ic 5.4.2 Fracture Toughness of Thin Panels ..........................112 5.5 Correlations between Charpy Energy and Fracture Toughness ..............................................................................118 5.5.1 Charpy Energy versus Fracture Toughness Correlation for Lower-Shelf and Lower Transition Region .....................................................118 5.5.2 Charpy Energy versus Fracture Toughness Correlation in the Upper-Shelf Region .....................118 5.6 Summary ...............................................................................119 References ........................................................................................119 Homework Problems ........................................................................120 Appendix 5A: Compliance Relationships for C(T) and M(T) Specimens ........................................................................121 5A.1 Compliance Relationships for C(T) Specimen .........121 5A.2 Compliance and K-Relationships for M(T) Specimens ..................................................................123 Notes .................................................................................................124 Chapter 6 Fatigue Crack Growth ......................................................................125 6.1 I ntroduction ...........................................................................125 6.2 Fatigue Crack Growth (or Propagation) Rates ......................126 6.2.1 D efinitions ................................................................126 6.2.2 Mechanisms of Fatigue Crack Growth ....................129 6.2.3 Fatigue Crack Growth Life Estimation ....................131 viii Contents 6.3 The Effect of Load Ratio, Temperature, and Frequency on Fatigue Crack Growth Rate in the Paris Regime .............136 6.4 Wide Range Fatigue Crack Growth Behavior .......................137 6.5 Crack Tip Plasticity during Cyclic Loading ..........................142 6.5.1 C yclic Plastic Zone ...................................................142 6.5.2 Crack Closure during Cyclic Loading......................144 6.6 Fatigue Cycles Involving Compressive Loading ...................146 6.7 Models for Representing Load Ratio Effects on Fatigue Crack Growth Rates ..............................................................147 6.8 Fatigue Crack Growth Measurements (ASTM Standard E647) .........................................................150 6.9 Behavior of Small or Short Cracks ........................................159 6.9.1 Limitations of ∆K for Characterizing Small Fatigue Crack Growth Behavior ...............................161 6.10 F atigue Crack Growth under Variable Amplitude Loading ....164 6.10.1 Effects of Single Overloads/Underloads on Fatigue Crack Growth Behavior ...............................164 6.10.2 V ariable Amplitude Loading ....................................166 6.11 Summary ...............................................................................169 References ........................................................................................170 Homework Problems ........................................................................171 Note ..................................................................................................173 Chapter 7 Environment-Assisted Cracking.......................................................175 7.1 I ntroduction ...........................................................................175 7.2 M echanisms of EAC ..............................................................175 7.3 Relationship between EAC and K under Static Loads ..........179 7.4 Methods of Determining K ..............................................181 IEAC 7.5 Relationship between K and Yield Strength and IEAC Fracture Toughness ................................................................186 7.6 Environment Assisted Fatigue Crack Growth .......................191 7.7 Models for Environment Assisted Fatigue Crack Growth Behavior .................................................................................193 7.7.1 L inear Superposition Model .....................................194 7.7.2 A Model for Predicting the Effects of Hydrogen Pressure on the Fatigue Crack Growth Behavior .....196 7.8 Summary ...............................................................................202 References ........................................................................................203 Homework Problems ........................................................................205 Chapter 8 Fracture under Mixed-Mode Loading ..............................................207 8.1 I ntroduction ...........................................................................207 8.2 Stress Analysis of Cracks under Mixed Mode Loading ........209 Contents ix 8.3 Mixed Mode Considerations in Fracture of Isotropic Materials ................................................................................211 8.3.1 Fracture Criterion Based on Energy Available for Crack Extension .......................................................211 8.3.2 Maximum Circumferential Stress Fracture Criterion ...................................................................215 8.3.3 Strain Energy Density (SED) as Mixed Mode Fracture Criterion .....................................................218 8.4 Fracture Toughness Measurements under Mixed-Mode Conditions ..............................................................................223 8.4.1 F racture in Bones .....................................................223 8.4.2 Measurement of Fracture Toughness under Mode II (K ) ............................................................225 IIc 8.4.3 Measurement of Interfacial Toughness in Laminate Composites ...............................................229 8.5 Fatigue Crack Growth under Mixed-Mode Loading.............235 8.6 Summary ...............................................................................240 References ........................................................................................241 Homework Problems ........................................................................242 Chapter 9 Fracture and Crack Growth under Elastic/Plastic Loading .............245 9.1 I ntroduction ...........................................................................245 9.2 R ice’s J-Integral .....................................................................246 9.3 J-Integral as a Fracture Parameter ........................................249 9.4 Equations for Determining J in C(T) Specimens ..................251 9.5 Fatigue Crack Growth under Gross Plasticity Conditions ....254 9.5.1 Experimental Correlation between da/dN and ∆J ......................................................................256 9.6 Summary ...............................................................................259 References ........................................................................................259 Homework Problems ........................................................................260 Chapter 10 Creep and Creep-Fatigue Crack Growth ..........................................263 10.1 I ntroduction ...........................................................................263 10.2 Creep Crack Growth ..............................................................266 10.2.1 The C*-Integral .........................................................266 10.2.2 C (t) Integral and the C Parameter ............................268 t 10.2.3 Creep Crack Growth in Creep-Brittle Materials ......271 10.3 Crack Growth under Creep-Fatigue-Environment Conditions ..............................................................................273 10.3.1 da/dN versus ∆K Correlations ..................................274 10.3.2 Creep-Fatigue Crack Growth Rates for Long Cycle Times ..............................................................281