0.875” D Basic Data Analysis e r r y b for Time Series with R e r r y DeWayne R. Derryberry Presents modern methods to analyzing data with multiple applications in a variety of scientific fields Written at a readily accessible level, Basic Data Analysis for Time Series with R emphasizes B the mathematical importance of collaborative analysis of data used to collect increments of a time or space. Balancing a theoretical and practical approach to analyzing data within the s context of serial correlation, the book presents a coherent and systematic regression-based i c approach to model selection. The book illustrates these principles of model selection and D model building through the use of information criteria, cross validation, hypothesis tests, and confidence intervals. a t a Focusing on frequency- and time-domain and trigonometric regression as the primary themes, A the book also includes modern topical coverage on Fourier series and Akaike’s Information n Criterion (AIC). In addition, Basic Data Analysis for Time Series with R also features: a l y • Real-world examples to provide readers with practical hands-on experience s • Multiple R software subroutines employed with graphical displays is • Numerous exercise sets intended to support readers understanding of the core concepts f o • Specific chapters devoted to the analysis of the Wolf sunspot number data and the Vostok r ice core data sets T i m Basic Data Analysis for Time Series with R is an ideal textbook for upper-undergraduate and e beginning graduate-level courses using time series analysis as well as a useful reference for practicing statisticians and scientists. S e r i e DeWayne R. Derryberry, PhD, is Associate Professor in the Department of Mathematics s and Statistics at Idaho State University. Dr. Derryberry has published more than a dozen w journal articles and his research interests include meta-analysis, discriminant analysis with messy i t data, time series analysis of the relationship between several cancers, and geographically h weighted regression. R Cover Design: Wiley Cover Image: © iStockphoto/vlastas Graph: Courtesy of the author Subscribe to our free Statistics eNewsletter at wiley.com/enewsletters Visit wiley.com/statistics Also available as an e-book JWST451-fm JWST451-Derryberry May23,2014 10:39 PrinterName: Trim:6.125in×9.25in ii JWST451-fm JWST451-Derryberry May23,2014 10:39 PrinterName: Trim:6.125in×9.25in BASIC DATA ANALYSIS FOR TIME SERIES WITH R i JWST451-fm JWST451-Derryberry May23,2014 10:39 PrinterName: Trim:6.125in×9.25in ii JWST451-fm JWST451-Derryberry May23,2014 10:39 PrinterName: Trim:6.125in×9.25in BASIC DATA ANALYSIS FOR TIME SERIES WITH R DEWAYNER.DERRYBERRY DepartmentofMathematicsandStatistics IdahoStateUniversity Boise,ID iii JWST451-fm JWST451-Derryberry May23,2014 10:39 PrinterName: Trim:6.125in×9.25in Copyright©2014byJohnWiley&Sons,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernor authorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat (317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteat www.wiley.com. LibraryofCongressCataloging-in-PublicationData: Derryberry,DeWayneR.,author. BasicdataanalysisfortimeserieswithR/DeWayneR.Derryberry,DepartmentofMathematicsand Statistics,IdahoStateUniversity,Voise,ID. pagescm Includesbibliographicalreferencesandindex. ISBN978-1-118-42254-0(hardback) 1.Time-seriesanalysis–Dataprocessing. 2.R(Computerprogramlanguage) I.Title. QA280.D4752014 001.4′2202855133–dc23 2014007300 PrintedintheUnitedStatesofAmerica ISBN:9781118422540 10 9 8 7 6 5 4 3 2 1 iv JWST451-fm JWST451-Derryberry May23,2014 10:39 PrinterName: Trim:6.125in×9.25in CONTENTS PREFACE xv ACKNOWLEDGMENTS xvii PARTI BASICCORRELATIONSTRUCTURES 1 RBasics 3 1.1 GettingStarted, 3 1.2 SpecialRConventions, 5 1.3 CommonStructures, 5 1.4 CommonFunctions, 6 1.5 TimeSeriesFunctions, 6 1.6 ImportingData, 7 Exercises, 7 2 ReviewofRegressionandMoreAboutR 8 2.1 GoalsofthisChapter, 8 2.2 TheSimple(ST)RegressionModel, 8 2.2.1 OrdinaryLeastSquares, 8 2.2.2 PropertiesofOLSEstimates, 9 2.2.3 MatrixRepresentationoftheProblem, 9 2.3 SimulatingtheDatafromaModelandEstimatingtheModel ParametersinR, 9 2.3.1 SimulatingData, 9 2.3.2 EstimatingtheModelParametersinR, 9 v JWST451-fm JWST451-Derryberry May23,2014 10:39 PrinterName: Trim:6.125in×9.25in vi CONTENTS 2.4 BasicInferencefortheModel, 12 2.5 ResidualsAnalysis—WhatCanGoWrong…, 13 2.6 MatrixManipulationinR, 15 2.6.1 Introduction, 15 2.6.2 OLStheHardWay, 15 2.6.3 SomeOtherMatrixCommands, 16 Exercises, 16 3 TheModelingApproachTakeninthisBookandSomeExamples ofTypicalSeriallyCorrelatedData 18 3.1 SignalandNoise, 18 3.2 TimeSeriesData, 19 3.3 SimpleRegressionintheFramework, 20 3.4 RealDataandSimulatedData, 20 3.5 TheDiversityofTimeSeriesData, 21 3.6 GettingDataIntoR, 24 3.6.1 Overview, 24 3.6.2 TheDisketteandthescan()andts()Functions—New YorkCityTemperatures, 25 3.6.3 TheDisketteandtheread.table()Function—The SemmelweisData, 25 3.6.4 CutandPasteDatatoaTextEditor, 26 Exercises, 26 4 SomeCommentsonAssumptions 28 4.1 Introduction, 28 4.2 TheNormalityAssumption, 29 4.2.1 RightSkew, 30 4.2.2 LeftSkew, 30 4.2.3 HeavyTails, 30 4.3 EqualVariance, 31 4.3.1 Two-Samplet-Test, 31 4.3.2 Regression, 31 4.4 Independence, 31 4.5 PowerofLogarithmicTransformationsIllustrated, 32 4.6 Summary, 34 Exercises, 34 5 TheAutocorrelationFunctionAndAR(1),AR(2)Models 35 5.1 StandardModels—WhataretheAlternativestoWhiteNoise?, 35 5.2 AutocovarianceandAutocorrelation, 36 5.2.1 Stationarity, 36 5.2.2 ANoteAboutConditions, 36 JWST451-fm JWST451-Derryberry May23,2014 10:39 PrinterName: Trim:6.125in×9.25in CONTENTS vii 5.2.3 PropertiesofAutocovariance, 36 5.2.4 WhiteNoise, 37 5.2.5 EstimationoftheAutocovarianceandAutocorrelation, 37 5.3 Theacf()FunctioninR, 37 5.3.1 Background, 37 5.3.2 TheBasicCodeforEstimatingtheAutocovariance, 38 5.4 TheFirstAlternativetoWhiteNoise:Autoregressive Errors—AR(1),AR(2), 40 5.4.1 DefinitionoftheAR(1)andAR(2)Models, 40 5.4.2 SomePreliminaryFacts, 40 5.4.3 TheAR(1)ModelAutocorrelationandAutocovariance, 41 5.4.4 UsingCorrelationandScatterplotstoIllustratetheAR(1) Model, 41 5.4.5 TheAR(2)ModelAutocorrelationandAutocovariance, 41 5.4.6 SimulatingDataforAR(m)Models, 42 5.4.7 ExamplesofStableandUnstableAR(1)Models, 44 5.4.8 ExamplesofStableandUnstableAR(2)Models, 46 Exercises, 49 6 TheMovingAverageModelsMA(1)AndMA(2) 51 6.1 TheMovingAverageModel, 51 6.2 TheAutocorrelationforMA(1)Models, 51 6.3 ADualityBetweenMA(l)AndAR(m)Models, 52 6.4 TheAutocorrelationforMA(2)Models, 52 6.5 SimulatedExamplesoftheMA(1)Model, 52 6.6 SimulatedExamplesoftheMA(2)Model, 54 6.7 AR(m)andMA(l)modelacf()Plots, 54 Exercises, 57 PARTII ANALYSISOFPERIODICDATAANDMODEL SELECTION 7 ReviewofTranscendentalFunctionsandComplexNumbers 61 7.1 Background, 61 7.2 ComplexArithmetic, 62 7.2.1 TheNumberi, 62 7.2.2 ComplexConjugates, 62 7.2.3 TheMagnitudeofaComplexNumber, 62 7.3 SomeImportantSeries, 63 7.3.1 TheGeometricandSomeTranscendentalSeries, 63 7.3.2 ARationaleforEuler’sFormula, 63 7.4 UsefulFactsAboutPeriodicTranscendentalFunctions, 64 Exercises, 64 JWST451-fm JWST451-Derryberry May23,2014 10:39 PrinterName: Trim:6.125in×9.25in viii CONTENTS 8 ThePowerSpectrumandthePeriodogram 65 8.1 Introduction, 65 8.2 ADefinitionandaSimplifiedFormforp(f), 66 8.3 Invertingp(f)toRecovertheC Values, 66 k 8.4 ThePowerSpectrumforSomeFamiliarModels, 68 8.4.1 WhiteNoise, 68 8.4.2 TheSpectrumforAR(1)Models, 68 8.4.3 TheSpectrumforAR(2)Models, 70 8.5 ThePeriodogram,aCloserLook, 72 8.5.1 WhyisthePeriodogramUseful?, 72 8.5.2 SomeNa¨ıveCodeforaPeriodogram, 72 8.5.3 AnExample—TheSunspotData, 74 8.6 TheFunctionspec.pgram()inR, 75 Exercises, 77 9 Smoothers,TheBias-VarianceTradeoff,andtheSmoothed Periodogram 79 9.1 WhyisSmoothingRequired?, 79 9.2 Smoothing,Bias,andVariance, 79 9.3 SmoothersUsedinR, 80 9.3.1 TheRFunctionlowess(), 81 9.3.2 TheRFunctionsmooth.spline(), 82 9.3.3 KernelSmoothersinspec.pgram(), 83 9.4 SmoothingthePeriodogramforaSeriesWithaKnownand UnknownPeriod, 85 9.4.1 PeriodKnown, 85 9.4.2 PeriodUnknown, 86 9.5 Summary, 87 Exercises, 87 10 ARegressionModelforPeriodicData 89 10.1 TheModel, 89 10.2 AnExample:TheNYCTemperatureData, 91 10.2.1 FittingaPeriodicFunction, 91 10.2.2 AnOutlier, 92 10.2.3 RefittingtheModelwiththeOutlierCorrected, 92 10.3 Complications1:CO Data, 93 2 10.4 Complications2:SunspotNumbers, 94 10.5 Complications3:AccidentalDeaths, 96 10.6 Summary, 96 Exercises, 96
Description: