ebook img

Basic analysis IV: measure theory and integration PDF

501 Pages·2021·18.763 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Basic analysis IV: measure theory and integration

Basic Analysis IV Basic Analysis IV: Measure Theory and Integration The giant squids are interested in advanced mathematical training and Jim is happy to help! James K. Peterson Department of Mathematical Sciences Clemson University First edition published 2021 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2020 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as­ sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho­ tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for iden­ tification and explanation without intent to infringe. ISBN: 978-1-138-05511-7 (hbk) ISBN: 978-1-315-16618-6 (ebk) LCCN: 2019059882 Dedication We dedicate this work to all of our students who have been learning these ideas of analysis through our courses. We have learned as much from them as we hope they have from us. We are a firm believer that all our students are capable of excellence and that the only path to excellence is through discipline and study. We have always been proud of our students for doing so well on this journey. We hope these notes in turn make you proud of our efforts. Abstract This book introduces graduate students in mathematics concepts from measure theory and also, continues their training in the abstract way of looking at the world. We feel that is a most important skill to have when your life’s work will involve quantitative modeling to gain insight into the real world. Acknowledgments I want to acknowledge the great debt I have to my wife, Pauli, for her pa­ tience in dealing with the long hours spent in typing and thinking. You are the love of my life. The cover for this book is an original painting by me done in July 2017. It shows the moment when the giant squids reached out to me to learn advanced mathematics. Table of Contents I Introductory Matter 1 1 Introduction 3 1.1 TheAnalysisCourses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 SeniorLevelAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 TheGraduateAnalysisCourses . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 MoreAdvancedCourses . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 TeachingtheMeasureandIntegrationCourse . . . . . . . . . . . . . . . . . . . . 8 1.3 TableofContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 II Classical Riemann Integration 13 2 An Overview of Riemann Integration 15 2.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 TheRiemannIntegralasaLimit . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2 TheFundamentalTheoremofCalculus . . . . . . . . . . . . . . . . . . . 19 2.1.3 The Cauchy Fundamental Theorem of Calculus . . . . . . . . . . . . . . . 22 2.2 HandlingJumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 RemovableDiscontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 JumpDiscontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Bounded Variation 29 3.1 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Monotone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 TheSaltusFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 TheContinuousPartofaMonotoneFunction . . . . . . . . . . . . . . . . 38 3.3 BoundedVariation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 TheTotalVariationFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5 ContinuousFunctionsofBoundedVariation . . . . . . . . . . . . . . . . . . . . . 51 4 Riemann Integration 55 4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4 RiemannIntegrable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 MoreProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.6 FundamentalTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.7 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.8 SameIntegral? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 vii viii TABLE OF CONTENTS 5 Further Riemann Results 93 5.1 LimitInterchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 RiemannIntegrable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3 ContentZero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 III Riemann -Stieltjes Integration 109 6 The Riemann -Stieltjes Integral 111 6.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.2 StepIntegrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.3 MonotoneIntegrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.4 EquivalenceTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.5 FurtherProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.6 BoundedVariationIntegrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7 Further Riemann -Stieltjes Results 133 7.1 FundamentalTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.3 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 IV Abstract Measure Theory One 147 8 Measurability 149 8.1 BorelSigma-Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8.2 TheExtendedBorelSigma-Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.3 MeasurableFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.5 ExtendedReal-Valued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.6 ExtendedProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 8.7 ContinuousCompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 8.7.1 The Composition with Finite Measurable Functions . . . . . . . . . . . . . 168 8.7.2 The Approximation of Non-Negative Measurable Functions . . . . . . . . 168 8.7.3 Continuous Functions of Extended Real-Valued Measurable Functions . . 170 9 Abstract Integration 173 9.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 9.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 9.3 SequencesofSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 9.5 IntegrationProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 9.6 Equalitya.e. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 9.7 CompleteMeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 9.8 ConvergenceTheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 9.8.1 MonotoneConvergenceTheorems . . . . . . . . . . . . . . . . . . . . . . 194 9.8.2 Fatou’sLemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 9.9 TheAbsoluteContinuityofaMeasure . . . . . . . . . . . . . . . . . . . . . . . . 200 9.10 SummableFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.11 ExtendedIntegrands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.12 Levi’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 TABLE OF CONTENTS ix 9.13 ConstructingCharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9.14 PropertiesofSummableFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 209 9.15 TheDominatedConvergenceTheorem . . . . . . . . . . . . . . . . . . . . . . . . 211 9.16 AlternativeAbstractIntegrationSchemes . . . . . . . . . . . . . . . . . . . . . . 214 9.16.1 PropertiesoftheDarbouxIntegral . . . . . . . . . . . . . . . . . . . . . . 218 10 The L Spaces 223 p 10.1 The General L Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 p 10.2 TheWorldofCountingMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 10.3 EssentiallyBoundedFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 10.4 The Hilbert Space L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 2 V Constructing Measures 249 11 Building Measures 251 11.1 MeasuresfromOuterMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 11.2 ThePropertiesoftheOuterMeasure . . . . . . . . . . . . . . . . . . . . . . . . . 254 11.3 MeasuresInducedbyOuterMeasures . . . . . . . . . . . . . . . . . . . . . . . . 257 11.4 MeasuresfromMetricOuterMeasures . . . . . . . . . . . . . . . . . . . . . . . . 258 11.5 ConstructingOuterMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 12 Lebesgue Measure 273 12.1 OuterMeasure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 12.2 LebesgueOuterMeasureisaMetricOuterMeasure . . . . . . . . . . . . . . . . . 283 12.3 LebesgueMeasureisRegular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 12.4 ApproximationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 12.4.1 ApproximatingMeasurableSets . . . . . . . . . . . . . . . . . . . . . . . 288 12.4.2 ApproximatingMeasurableFunctions . . . . . . . . . . . . . . . . . . . . 292 12.5 TheSummableFunctionsareSeparable . . . . . . . . . . . . . . . . . . . . . . . 294 12.6 The Existence of Non-Lebesgue Measurable Sets . . . . . . . . . . . . . . . . . . 295 12.7 MetricSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 13 Cantor Sets 301 13.1 Generalized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 13.2 Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 13.3 TheCantorFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 13.4 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 14 Lebesgue -Stieltjes Measure 309 14.1 Lebesgue-StieltjesOuterMeasureandMeasure. . . . . . . . . . . . . . . . . . . 311 14.2 ApproximationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 14.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 VI Abstract Measure Theory Two 323 15 Convergence Modes 325 15.1 ExtractingSubsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 15.2 Egoroff’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 15.3 Vitali’sTheorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 15.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.