Igor R. Shafarevich Basic Algebraic Geometry 2 Schemes and Complex Manifolds Third Edition Basic Algebraic Geometry 2 Igor R. Shafarevich Basic Algebraic Geometry 2 Schemes and Complex Manifolds Third Edition IgorR.Shafarevich Translator AlgebraSection MilesReid SteklovMathematicalInstitute MathematicsInstitute oftheRussianAcademyofSciences UniversityofWarwick Moscow,Russia Coventry,UK ISBN978-3-642-38009-9 ISBN978-3-642-38010-5(eBook) DOI10.1007/978-3-642-38010-5 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013945857 MathematicsSubjectClassification(2010): 14-01 Translation of the 3rd Russian edition entitled “Osnovy algebraicheskoj geometrii”. MCCME, Moscow2007,originallypublishedinRussianinonevolume ©Springer-VerlagBerlinHeidelberg1977,1994,2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface to Books 2–3 Books2–3correspondtoChaptersV–IXofthefirstedition.Theystudyschemesand complexmanifolds,twonotionsthatgeneraliseindifferentdirectionsthevarieties in projective space studied in Book 1. Introducing them leads also to new results inthetheoryofprojectivevarieties.Forexample,itiswithintheframeworkofthe theoryofschemesandabstractvarietiesthatwefindthenaturalproofoftheadjunc- tionformulaforthegenusofacurve,whichwehavealreadystatedandappliedin Section2.3,Chapter4.Thetheoryofcomplexanalyticmanifoldsleadstothestudy ofthetopologyofprojectivevarietiesoverthefieldofcomplexnumbers.Forsome questionsitisonlyherethatthenaturalandhistoricallogicofthesubjectcanbere- asserted;forexample,differentialformswereconstructedinordertobeintegrated, aprocesswhichonlymakessenseforvarietiesoverthe(realor)complexfields. Changesfrom theFirstEdition AsintheBook1,thereareanumberofadditionstothetext,ofwhichthefollowing two are the most important. The first of these is a discussion of the notion of the algebraic variety classifying algebraic or geometric objects of some type. As an exampleweworkoutthetheoryoftheHilbertpolynomialandtheHilbertscheme. IamverygratefultoV.I.Danilovforaseriesofrecommendationsonthissubject. In particular the proof of Theorem 6.7 is due to him. The second addition is the definitionandbasicpropertiesofaKählermetric,andadescription(withoutproof) ofHodge’stheorem. Prerequisites Varietiesinprojectivespacewillprovideuswiththemainsupplyofexamples,and thetheoreticalapparatusofBook1willbeused,butbynomeansallofit.Differ- ent sections use different parts, and there is no point in giving exact indications. ReferencestotheAppendixaretotheAlgebraicAppendixattheendofBook1. V VI PrefacetoBooks2–3 PrerequisitesforthereaderofBooks2–3areasfollows:forBook2,thesameas forBook1;forBook3,thedefinitionofdifferentiablemanifold,thebasictheoryof analyticfunctionsofacomplexvariable,andaknowledgeofhomology,cohomol- ogyanddifferentialforms(knowledgeoftheproofsisnotessential);forChapter9, familiaritywiththenotionoffundamentalgroupandtheuniversalcover.References forthesetopicsaregiveninthetext. RecommendationsforFurther Reading For the reader wishing to go further in the study of algebraic geometry, we can recommendthefollowingreferences. For the cohomology of algebraic coherent sheaves and their applications: see Hartshorne[37]. AnelementaryproofoftheRiemann–RochtheoremforcurvesisgiveninW.Ful- ton,Algebraiccurves.Anintroductiontoalgebraicgeometry,W.A.Benjamin,Inc., New York–Amsterdam, 1969. This book is available as a free download from http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf. ForthegeneralcaseofRiemann–Roch,seeA.BorelandJ.-P.Serre,Lethéorème deRiemann–Roch,Bull.Soc.Math.France86(1958)97–136, Yu.I.Manin,LecturesontheK-functorinalgebraicgeometry,UspehiMat.Nauk 24:5 (149) (1969) 3–86, English translation: Russian Math. Surveys 24:5 (1969) 1–89, W. Fulton and S. Lang, Riemann–Roch algebra, Grundlehren der mathematis- chenWissenschaften277,Springer-Verlag,NewYork,1985. Moscow,Russia I.R.Shafarevich Contents Book2:SchemesandVarieties 5 Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 TheSpecofaRing. . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 DefinitionofSpecA . . . . . . . . . . . . . . . . . . . . . 5 1.2 PropertiesofPointsofSpecA . . . . . . . . . . . . . . . . 7 1.3 TheZariskiTopologyofSpecA . . . . . . . . . . . . . . . 9 1.4 Irreducibility,Dimension . . . . . . . . . . . . . . . . . . 11 1.5 ExercisestoSection1 . . . . . . . . . . . . . . . . . . . . 14 2 Sheaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 TheStructurePresheaf. . . . . . . . . . . . . . . . . . . . 17 2.3 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 StalksofaSheaf . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 ExercisestoSection2 . . . . . . . . . . . . . . . . . . . . 24 3 Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 DefinitionofaScheme . . . . . . . . . . . . . . . . . . . 25 3.2 GlueingSchemes . . . . . . . . . . . . . . . . . . . . . . 30 3.3 ClosedSubschemes . . . . . . . . . . . . . . . . . . . . . 32 3.4 ReducedSchemesandNilpotents . . . . . . . . . . . . . . 35 3.5 FinitenessConditions . . . . . . . . . . . . . . . . . . . . 36 3.6 ExercisestoSection3 . . . . . . . . . . . . . . . . . . . . 38 4 ProductsofSchemes . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1 DefinitionofProduct . . . . . . . . . . . . . . . . . . . . 40 4.2 GroupSchemes . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Separatedness . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 ExercisestoSection4 . . . . . . . . . . . . . . . . . . . . 46 6 Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1 DefinitionsandExamples . . . . . . . . . . . . . . . . . . . . . . 49 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 49 VII VIII Contents 1.2 VectorBundles . . . . . . . . . . . . . . . . . . . . . . . . 53 1.3 VectorBundlesandSheaves . . . . . . . . . . . . . . . . . 56 1.4 DivisorsandLineBundles. . . . . . . . . . . . . . . . . . 63 1.5 ExercisestoSection1 . . . . . . . . . . . . . . . . . . . . 67 2 AbstractandQuasiprojectiveVarieties . . . . . . . . . . . . . . . 68 2.1 Chow’sLemma . . . . . . . . . . . . . . . . . . . . . . . 68 2.2 BlowupAlongaSubvariety . . . . . . . . . . . . . . . . . 70 2.3 ExampleofNon-quasiprojectiveVariety . . . . . . . . . . 74 2.4 CriterionsforProjectivity . . . . . . . . . . . . . . . . . . 79 2.5 ExercisestoSection2 . . . . . . . . . . . . . . . . . . . . 81 3 CoherentSheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.1 SheavesofO -Modules . . . . . . . . . . . . . . . . . . . 81 X 3.2 CoherentSheaves . . . . . . . . . . . . . . . . . . . . . . 85 3.3 DévissageofCoherentSheaves . . . . . . . . . . . . . . . 88 3.4 TheFinitenessTheorem . . . . . . . . . . . . . . . . . . . 92 3.5 ExercisestoSection3 . . . . . . . . . . . . . . . . . . . . 93 4 ClassificationofGeometricObjectsandUniversalSchemes . . . . 94 4.1 SchemesandFunctors . . . . . . . . . . . . . . . . . . . . 94 4.2 TheHilbertPolynomial . . . . . . . . . . . . . . . . . . . 100 4.3 FlatFamilies . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4 TheHilbertScheme . . . . . . . . . . . . . . . . . . . . . 107 4.5 ExercisestoSection4 . . . . . . . . . . . . . . . . . . . . 110 Book3:ComplexAlgebraicVarietiesandComplexManifolds 7 TheTopologyofAlgebraicVarieties . . . . . . . . . . . . . . . . . . 115 1 TheComplexTopology . . . . . . . . . . . . . . . . . . . . . . . 115 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 115 1.2 Algebraic Varieties as Differentiable Manifolds; Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . 117 1.3 HomologyofNonsingularProjectiveVarieties . . . . . . . 118 1.4 ExercisestoSection1 . . . . . . . . . . . . . . . . . . . . 121 2 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 2.1 PreliminaryLemmas. . . . . . . . . . . . . . . . . . . . . 121 2.2 TheFirstProofoftheMainTheorem . . . . . . . . . . . . 122 2.3 TheSecondProof . . . . . . . . . . . . . . . . . . . . . . 124 2.4 AnalyticLemmas . . . . . . . . . . . . . . . . . . . . . . 126 2.5 ConnectednessofFibres . . . . . . . . . . . . . . . . . . . 127 2.6 ExercisestoSection2 . . . . . . . . . . . . . . . . . . . . 128 3 TheTopologyofAlgebraicCurves . . . . . . . . . . . . . . . . . 129 3.1 LocalStructureofMorphisms . . . . . . . . . . . . . . . . 129 3.2 TriangulationofCurves . . . . . . . . . . . . . . . . . . . 131 3.3 TopologicalClassificationofCurves . . . . . . . . . . . . 133 3.4 CombinatorialClassificationofSurfaces . . . . . . . . . . 137 3.5 TheTopologyofSingularitiesofPlaneCurves . . . . . . . 140 3.6 ExercisestoSection3 . . . . . . . . . . . . . . . . . . . . 142 Contents IX 4 RealAlgebraicCurves . . . . . . . . . . . . . . . . . . . . . . . . 142 4.1 ComplexConjugation . . . . . . . . . . . . . . . . . . . . 143 4.2 ProofofHarnack’sTheorem . . . . . . . . . . . . . . . . 144 4.3 OvalsofRealCurves . . . . . . . . . . . . . . . . . . . . 146 4.4 ExercisestoSection4 . . . . . . . . . . . . . . . . . . . . 147 8 ComplexManifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 1 DefinitionsandExamples . . . . . . . . . . . . . . . . . . . . . . 149 1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 149 1.2 QuotientSpaces . . . . . . . . . . . . . . . . . . . . . . . 152 1.3 CommutativeAlgebraicGroupsasQuotientSpaces . . . . 155 1.4 ExamplesofCompactComplexManifoldsnotIsomorphic toAlgebraicVarieties . . . . . . . . . . . . . . . . . . . . 157 1.5 ComplexSpaces . . . . . . . . . . . . . . . . . . . . . . . 163 1.6 ExercisestoSection1 . . . . . . . . . . . . . . . . . . . . 165 2 DivisorsandMeromorphicFunctions . . . . . . . . . . . . . . . . 166 2.1 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 2.2 MeromorphicFunctions . . . . . . . . . . . . . . . . . . . 169 2.3 TheStructureoftheFieldM(X) . . . . . . . . . . . . . . 171 2.4 ExercisestoSection2 . . . . . . . . . . . . . . . . . . . . 174 3 AlgebraicVarietiesandComplexManifolds . . . . . . . . . . . . 175 3.1 ComparisonTheorems . . . . . . . . . . . . . . . . . . . . 175 3.2 ExampleofNonisomorphicAlgebraicVarietiesthatAre IsomorphicasComplexManifolds . . . . . . . . . . . . . 178 3.3 ExampleofaNonalgebraicCompactComplexManifold with MaximalNumberofIndependentMeromorphic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 181 3.4 TheClassificationofCompactComplexSurfaces . . . . . 183 3.5 ExercisestoSection3 . . . . . . . . . . . . . . . . . . . . 185 4 KählerManifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 185 4.1 KählerMetric . . . . . . . . . . . . . . . . . . . . . . . . 186 4.2 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . 188 4.3 OtherCharacterisationsofKählerMetrics . . . . . . . . . 190 4.4 ApplicationsofKählerMetrics . . . . . . . . . . . . . . . 193 4.5 HodgeTheory . . . . . . . . . . . . . . . . . . . . . . . . 196 4.6 ExercisestoSection4 . . . . . . . . . . . . . . . . . . . . 198 9 Uniformisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 1 TheUniversalCover . . . . . . . . . . . . . . . . . . . . . . . . . 201 1.1 TheUniversalCoverofaComplexManifold . . . . . . . . 201 1.2 UniversalCoversofAlgebraicCurves . . . . . . . . . . . 203 1.3 ProjectiveEmbeddingofQuotientSpaces . . . . . . . . . 205 1.4 ExercisestoSection1 . . . . . . . . . . . . . . . . . . . . 206 2 CurvesofParabolicType . . . . . . . . . . . . . . . . . . . . . . 207 2.1 ThetaFunctions . . . . . . . . . . . . . . . . . . . . . . . 207 2.2 ProjectiveEmbedding . . . . . . . . . . . . . . . . . . . . 209 X Contents 2.3 EllipticFunctions,EllipticCurvesandEllipticIntegrals . . 210 2.4 ExercisestoSection2 . . . . . . . . . . . . . . . . . . . . 213 3 CurvesofHyperbolicType . . . . . . . . . . . . . . . . . . . . . 213 3.1 PoincaréSeries. . . . . . . . . . . . . . . . . . . . . . . . 213 3.2 ProjectiveEmbedding . . . . . . . . . . . . . . . . . . . . 216 3.3 AlgebraicCurvesandAutomorphicFunctions . . . . . . . 218 3.4 ExercisestoSection3 . . . . . . . . . . . . . . . . . . . . 221 4 UniformisingHigherDimensionalVarieties . . . . . . . . . . . . 221 4.1 CompleteIntersectionsareSimplyConnected . . . . . . . 221 4.2 ExampleofManifoldwithπ aGivenFiniteGroup . . . . 222 1 4.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 4.4 ExercisestoSection4 . . . . . . . . . . . . . . . . . . . . 227 HistoricalSketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 1 EllipticIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 2 EllipticFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 231 3 AbelianIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 4 RiemannSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 235 5 TheInversionofAbelianIntegrals . . . . . . . . . . . . . . . . . 237 6 TheGeometryofAlgebraicCurves . . . . . . . . . . . . . . . . . 239 7 HigherDimensionalGeometry . . . . . . . . . . . . . . . . . . . 241 8 TheAnalyticTheoryofComplexManifolds . . . . . . . . . . . . 243 9 AlgebraicVarietiesoverArbitraryFieldsandSchemes . . . . . . . 244 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 ReferencesfortheHistoricalSketch. . . . . . . . . . . . . . . . . . . . 250 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Description: