ebook img

Backtesting Value at Risk and Expected Shortfall PDF

155 Pages·2016·2.966 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Backtesting Value at Risk and Expected Shortfall

BestMasters Mit „BestMasters“ zeichnet Springer die besten Masterarbeiten aus, die an renom- mierten Hochschulen in Deutschland, Österreich und der Schweiz entstanden sind. Die mit Höchstnote ausgezeichneten Arbeiten wurden durch Gutachter zur Veröff entlichung empfohlen und behandeln aktuelle Th emen aus unterschiedlichen Fachgebieten der Naturwissenschaft en, Psychologie, Technik und Wirtschaft swis- senschaft en. Die Reihe wendet sich an Praktiker und Wissenschaft ler gleichermaßen und soll insbesondere auch Nachwuchswissenschaft lern Orientierung geben. Springer awards „BestMasters“ to the best master’s theses which have been com- pleted at renowned universities in Germany, Austria, and Switzerland. Th e stud- ies received highest marks and were recommended for publication by supervisors. Th ey address current issues from various fi elds of research in natural sciences, psy- chology, technology, and economics. Th e series addresses practitioners as well as scientists and, in particular, off ers guidance for early stage researchers. Simona Roccioletti Backtesting Value at Risk and Expected Shortfall Simona Roccioletti Guilianova, Italy Master Thesis, University of Applied Sciences (b(cid:191) ) Vienna, Austria, 2015 BestMasters ISBN 978-3-658-11907-2 ISBN 978-3-658-11908-9 (eBook) DOI 10.1007/978-3-658-11908-9 Library of Congress Control Number: 2015958558 Springer Gabler © Springer Fachmedien Wiesbaden 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci(cid:191) cally the rights of translation, reprinting, reuse of illus- trations, recitation, broadcasting, reproduction on micro(cid:191) lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a speci(cid:191) c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer Gabler is a brand of Springer Fachmedien Wiesbaden Springer Fachmedien Wiesbaden is part of Springer Science+Business Media (www.springer.com) Acknowledgements Foremost,IwouldliketoexpressmysinceregratitudetomyadvisorProf. Chris- tianCechforhisexcellentguidance, hisadvicesandcorrectionsthatgreatlyim- provedthework. I am also grateful to Prof. Umberto Cherubini, who prompted me to study this subjectandguidedmerightfromthestart. IwishtoexpressmysincerethankstoDr. CarloAcerbi,whoprovidedinsightand expertisethatgreatlyassistedtheresearch,althoughhemaynotagreewithallof theinterpretations/conclusionsofthisthesis. ItakethisopportunitytoexpressgratitudetoalloftheDepartmentfacultymem- bersfortheirhelpandkindness. I would like to thank my QF and ARIMA collegues, who shared with me the bestmomentsofthiscourseofstudy. Still more I am grateful to my family, who gave me the opportunity to pursue acollegecareerandwhohasalwayssupportedme. Then I would like to express my gratitude to my lifelong friends, who never had anydoubtsaboutmy“finalsuccess”andwhoalwaysencouragedmetodothebest. Finally,IwouldliketothankthepersonIlove,foralwaysbeingwithme... whereverIgo... SimonaRoccioletti v Contents Acknowledgements v Contents vii List of Figures xi List of Tables xiii Abbreviations xv Symbols xvii Abstract xix 1 Introduction 1 2 Risk Measures and their Properties 5 2.1 Definitionofriskmeasure . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 ValueatRisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 ExpectedShortfall . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Expectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Coherentriskmeasures . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 CoherenceofVaR . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.2 CoherenceofES . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.3 CoherenceofExpectiles . . . . . . . . . . . . . . . . . . . . 18 2.6 RiskMeasures: adeeperview . . . . . . . . . . . . . . . . . . . . . 19 2.6.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.2 ComonotonicAdditivity . . . . . . . . . . . . . . . . . . . . 21 2.6.3 LawInvariance . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Elicitability 27 3.1 EvaluatePointForecasts . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2 BacktoElicitability . . . . . . . . . . . . . . . . . . . . . . 33 vii viii Contents 3.2 ElicitabilityofVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 ElicitabilityofES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 ElicitabilityofExpectiles . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Backtesting 43 4.1 TheBacktestingIdea . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 BacktestingVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.1 UnconditionalCoverageTests . . . . . . . . . . . . . . . . . 48 4.2.2 ConditionalCoverageTests . . . . . . . . . . . . . . . . . . 50 4.2.3 BacktestingwithInformationVariables . . . . . . . . . . . . 54 4.2.4 RegulatoryFramework . . . . . . . . . . . . . . . . . . . . . 55 4.3 BacktestingES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 Test1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.2 Test2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.3 Test3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3.4 Powerofthetests . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Empirical Analysis 71 5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2.1 NormalDistribution . . . . . . . . . . . . . . . . . . . . . . 73 5.2.2 Student’st-distribution. . . . . . . . . . . . . . . . . . . . . 74 5.2.3 KernelDensityEstimation . . . . . . . . . . . . . . . . . . . 74 5.2.4 GARCHModels. . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 Backtestingresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 VaRresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.2 ESresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 Conclusions 99 A MATLAB Code 101 A.1 MATLAB variables . . . . . . . . . . . . . . . . . . . . . . . . . 101 A.2 ESTIMATION OF RISK MEASURES . . . . . . . . . . . . . 104 A.2.1 Normal model . . . . . . . . . . . . . . . . . . . . . . . . 104 A.2.2 Student’s t model . . . . . . . . . . . . . . . . . . . . . . 105 A.2.3 Kernel model . . . . . . . . . . . . . . . . . . . . . . . . . 106 A.2.4 Garch with normal innovations . . . . . . . . . . . . . . 107 A.2.5 Garch with Student’s t innovations . . . . . . . . . . . 109 A.3 Value at Risk Tests . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.4 Expected Shortfall Tests . . . . . . . . . . . . . . . . . . . . . . 114 A.5 Monte Carlo p-values . . . . . . . . . . . . . . . . . . . . . . . . 116 B Figures 119 B.1 DAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Contents ix B.2 FTSE100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 B.3 NIKKEI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 B.4 EUROSTOXX50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Bibliography 141 List of Figures 2.1 Empiricalsensitivity(inpercentage)ofthehistoricalVaRandhis- toricalES,asinContetal.[16] . . . . . . . . . . . . . . . . . . . . 24 2.2 Empiricalsensitivity(inpercentage)oftheES0.01estimatedwith differentmethods,asinContetal.[16] . . . . . . . . . . . . . . . 25 5.1 S&P500log-returns&Histogram. (Lossesarepositivenumbers) . . . . . . . . . . . . . . . . . . . . . 72 5.2 QQplot-S&P500vsStandardNormal. . . . . . . . . . . . . . . . 73 5.3 S&P500vsFittedNormal&Student-t . . . . . . . . . . . . . . . . 75 5.4 S&P500vsFittedGaussianKernel . . . . . . . . . . . . . . . . . . 77 5.5 ConditionalstandarddeviationsestimatedbytheGARCH(1,1)model. 79 5.6 S&P500: VaRandESestimates . . . . . . . . . . . . . . . . . . . 80 5.7 S&P500: VaRestimatesfordifferentmodels(2007-2010). . . . . . 81 5.8 S&P500-PercentageofVaRexceptions . . . . . . . . . . . . . . . 83 5.9 S&P500: Log-returnsandexceptionsofVaR97.5% (orangecircles) andES97.5% (redcircles).. . . . . . . . . . . . . . . . . . . . . . . . 89 5.10 MCdistributionsforZ1 . . . . . . . . . . . . . . . . . . . . . . . . 92 5.11 S&P500-MCdistributionforZ2 . . . . . . . . . . . . . . . . . . . 94 5.12 OverestimationanUnderestimationAreas . . . . . . . . . . . . . . 95 5.13 S&P500-Z1 andZ2 ineachcalendaryear . . . . . . . . . . . . . . 96 5.14 S&P500-Z1 andZ2 cumulativeinyears . . . . . . . . . . . . . . . 97 B.1 DAXlog-returns(Lossesarepositivenumbers). . . . . . . . . . . . 119 B.2 DAX-QQplot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 B.3 DAXvsFittedDistributions. . . . . . . . . . . . . . . . . . . . . . 120 B.4 DAX-σ GARCHmodels . . . . . . . . . . . . . . . . . . . . . . . 120 B.5 DAX-VaRandESestimates. . . . . . . . . . . . . . . . . . . . . . 121 B.6 DAX-VaRexceptions . . . . . . . . . . . . . . . . . . . . . . . . . 121 B.7 DAX-Z1 Z2 percalendaryear. . . . . . . . . . . . . . . . . . . . . 122 B.8 DAX-Z1 Z2 cumulativeinyears. . . . . . . . . . . . . . . . . . . . 122 B.9 FTSE100log-returns(Lossesarepositivenumbers). . . . . . . . . 124 B.10FTSEvsFittedDistributions. . . . . . . . . . . . . . . . . . . . . . 125 B.11FTSE100-σ GARCHmodels. . . . . . . . . . . . . . . . . . . . . 125 B.12FTSE100-VaRandESestimates. . . . . . . . . . . . . . . . . . . 126 B.13FTSE100-VaRexceptions . . . . . . . . . . . . . . . . . . . . . . 126 B.14FTSE100-Z1 Z2 percalendaryear. . . . . . . . . . . . . . . . . . 127 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.