Table Of ContentBestMasters
Mit „BestMasters“ zeichnet Springer die besten Masterarbeiten aus, die an renom-
mierten Hochschulen in Deutschland, Österreich und der Schweiz entstanden sind.
Die mit Höchstnote ausgezeichneten Arbeiten wurden durch Gutachter zur
Veröff entlichung empfohlen und behandeln aktuelle Th emen aus unterschiedlichen
Fachgebieten der Naturwissenschaft en, Psychologie, Technik und Wirtschaft swis-
senschaft en.
Die Reihe wendet sich an Praktiker und Wissenschaft ler gleichermaßen und soll
insbesondere auch Nachwuchswissenschaft lern Orientierung geben.
Springer awards „BestMasters“ to the best master’s theses which have been com-
pleted at renowned universities in Germany, Austria, and Switzerland. Th e stud-
ies received highest marks and were recommended for publication by supervisors.
Th ey address current issues from various fi elds of research in natural sciences, psy-
chology, technology, and economics. Th e series addresses practitioners as well as
scientists and, in particular, off ers guidance for early stage researchers.
Simona Roccioletti
Backtesting Value at Risk
and Expected Shortfall
Simona Roccioletti
Guilianova, Italy
Master Thesis, University of Applied Sciences (b(cid:191) ) Vienna, Austria, 2015
BestMasters
ISBN 978-3-658-11907-2 ISBN 978-3-658-11908-9 (eBook)
DOI 10.1007/978-3-658-11908-9
Library of Congress Control Number: 2015958558
Springer Gabler
© Springer Fachmedien Wiesbaden 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, speci(cid:191) cally the rights of translation, reprinting, reuse of illus-
trations, recitation, broadcasting, reproduction on micro(cid:191) lms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a speci(cid:191) c statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.
Printed on acid-free paper
Springer Gabler is a brand of Springer Fachmedien Wiesbaden
Springer Fachmedien Wiesbaden is part of Springer Science+Business Media
(www.springer.com)
Acknowledgements
Foremost,IwouldliketoexpressmysinceregratitudetomyadvisorProf. Chris-
tianCechforhisexcellentguidance, hisadvicesandcorrectionsthatgreatlyim-
provedthework.
I am also grateful to Prof. Umberto Cherubini, who prompted me to study this
subjectandguidedmerightfromthestart.
IwishtoexpressmysincerethankstoDr. CarloAcerbi,whoprovidedinsightand
expertisethatgreatlyassistedtheresearch,althoughhemaynotagreewithallof
theinterpretations/conclusionsofthisthesis.
ItakethisopportunitytoexpressgratitudetoalloftheDepartmentfacultymem-
bersfortheirhelpandkindness.
I would like to thank my QF and ARIMA collegues, who shared with me the
bestmomentsofthiscourseofstudy.
Still more I am grateful to my family, who gave me the opportunity to pursue
acollegecareerandwhohasalwayssupportedme.
Then I would like to express my gratitude to my lifelong friends, who never had
anydoubtsaboutmy“finalsuccess”andwhoalwaysencouragedmetodothebest.
Finally,IwouldliketothankthepersonIlove,foralwaysbeingwithme...
whereverIgo...
SimonaRoccioletti
v
Contents
Acknowledgements v
Contents vii
List of Figures xi
List of Tables xiii
Abbreviations xv
Symbols xvii
Abstract xix
1 Introduction 1
2 Risk Measures and their Properties 5
2.1 Definitionofriskmeasure . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 ValueatRisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 ExpectedShortfall . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Expectiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Coherentriskmeasures . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 CoherenceofVaR . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 CoherenceofES . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 CoherenceofExpectiles . . . . . . . . . . . . . . . . . . . . 18
2.6 RiskMeasures: adeeperview . . . . . . . . . . . . . . . . . . . . . 19
2.6.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.2 ComonotonicAdditivity . . . . . . . . . . . . . . . . . . . . 21
2.6.3 LawInvariance . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Elicitability 27
3.1 EvaluatePointForecasts . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 BacktoElicitability . . . . . . . . . . . . . . . . . . . . . . 33
vii
viii Contents
3.2 ElicitabilityofVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 ElicitabilityofES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 ElicitabilityofExpectiles . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Backtesting 43
4.1 TheBacktestingIdea . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 BacktestingVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 UnconditionalCoverageTests . . . . . . . . . . . . . . . . . 48
4.2.2 ConditionalCoverageTests . . . . . . . . . . . . . . . . . . 50
4.2.3 BacktestingwithInformationVariables . . . . . . . . . . . . 54
4.2.4 RegulatoryFramework . . . . . . . . . . . . . . . . . . . . . 55
4.3 BacktestingES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Test1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Test2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.3 Test3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.4 Powerofthetests . . . . . . . . . . . . . . . . . . . . . . . . 68
5 Empirical Analysis 71
5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.1 NormalDistribution . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Student’st-distribution. . . . . . . . . . . . . . . . . . . . . 74
5.2.3 KernelDensityEstimation . . . . . . . . . . . . . . . . . . . 74
5.2.4 GARCHModels. . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Backtestingresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 VaRresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 ESresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6 Conclusions 99
A MATLAB Code 101
A.1 MATLAB variables . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2 ESTIMATION OF RISK MEASURES . . . . . . . . . . . . . 104
A.2.1 Normal model . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2.2 Student’s t model . . . . . . . . . . . . . . . . . . . . . . 105
A.2.3 Kernel model . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.2.4 Garch with normal innovations . . . . . . . . . . . . . . 107
A.2.5 Garch with Student’s t innovations . . . . . . . . . . . 109
A.3 Value at Risk Tests . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.4 Expected Shortfall Tests . . . . . . . . . . . . . . . . . . . . . . 114
A.5 Monte Carlo p-values . . . . . . . . . . . . . . . . . . . . . . . . 116
B Figures 119
B.1 DAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Contents ix
B.2 FTSE100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.3 NIKKEI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.4 EUROSTOXX50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Bibliography 141
List of Figures
2.1 Empiricalsensitivity(inpercentage)ofthehistoricalVaRandhis-
toricalES,asinContetal.[16] . . . . . . . . . . . . . . . . . . . . 24
2.2 Empiricalsensitivity(inpercentage)oftheES0.01estimatedwith
differentmethods,asinContetal.[16] . . . . . . . . . . . . . . . 25
5.1 S&P500log-returns&Histogram.
(Lossesarepositivenumbers) . . . . . . . . . . . . . . . . . . . . . 72
5.2 QQplot-S&P500vsStandardNormal. . . . . . . . . . . . . . . . 73
5.3 S&P500vsFittedNormal&Student-t . . . . . . . . . . . . . . . . 75
5.4 S&P500vsFittedGaussianKernel . . . . . . . . . . . . . . . . . . 77
5.5 ConditionalstandarddeviationsestimatedbytheGARCH(1,1)model. 79
5.6 S&P500: VaRandESestimates . . . . . . . . . . . . . . . . . . . 80
5.7 S&P500: VaRestimatesfordifferentmodels(2007-2010). . . . . . 81
5.8 S&P500-PercentageofVaRexceptions . . . . . . . . . . . . . . . 83
5.9 S&P500: Log-returnsandexceptionsofVaR97.5% (orangecircles)
andES97.5% (redcircles).. . . . . . . . . . . . . . . . . . . . . . . . 89
5.10 MCdistributionsforZ1 . . . . . . . . . . . . . . . . . . . . . . . . 92
5.11 S&P500-MCdistributionforZ2 . . . . . . . . . . . . . . . . . . . 94
5.12 OverestimationanUnderestimationAreas . . . . . . . . . . . . . . 95
5.13 S&P500-Z1 andZ2 ineachcalendaryear . . . . . . . . . . . . . . 96
5.14 S&P500-Z1 andZ2 cumulativeinyears . . . . . . . . . . . . . . . 97
B.1 DAXlog-returns(Lossesarepositivenumbers). . . . . . . . . . . . 119
B.2 DAX-QQplot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.3 DAXvsFittedDistributions. . . . . . . . . . . . . . . . . . . . . . 120
B.4 DAX-σ GARCHmodels . . . . . . . . . . . . . . . . . . . . . . . 120
B.5 DAX-VaRandESestimates. . . . . . . . . . . . . . . . . . . . . . 121
B.6 DAX-VaRexceptions . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.7 DAX-Z1 Z2 percalendaryear. . . . . . . . . . . . . . . . . . . . . 122
B.8 DAX-Z1 Z2 cumulativeinyears. . . . . . . . . . . . . . . . . . . . 122
B.9 FTSE100log-returns(Lossesarepositivenumbers). . . . . . . . . 124
B.10FTSEvsFittedDistributions. . . . . . . . . . . . . . . . . . . . . . 125
B.11FTSE100-σ GARCHmodels. . . . . . . . . . . . . . . . . . . . . 125
B.12FTSE100-VaRandESestimates. . . . . . . . . . . . . . . . . . . 126
B.13FTSE100-VaRexceptions . . . . . . . . . . . . . . . . . . . . . . 126
B.14FTSE100-Z1 Z2 percalendaryear. . . . . . . . . . . . . . . . . . 127
xi