UUnniivveerrssiittyy ooff NNeeww OOrrlleeaannss SScchhoollaarrWWoorrkkss@@UUNNOO University of New Orleans Theses and Dissertations and Theses Dissertations 8-7-2008 BB--SSpplliinnee BBoouunnddaarryy EElleemmeenntt MMeetthhoodd ffoorr SShhiippss Aditya Mohan Aggarwal University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td RReeccoommmmeennddeedd CCiittaattiioonn Aggarwal, Aditya Mohan, "B-Spline Boundary Element Method for Ships" (2008). University of New Orleans Theses and Dissertations. 853. https://scholarworks.uno.edu/td/853 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. B-Spline Boundary Element Method for Ships A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Engineering Naval Architecture and Marine Engineering by Aditya Mohan Aggarwal B.S. University of New Orleans, 2006 August, 2008 (cid:13)c 2008, Aditya Mohan Aggarwal ii Dedication For their sacrifice, love and support, this thesis is dedicated to Shail, Archana and Yogendra. Theirfaithinmyabilitieshasbeentheinspirationanddrivingforceforallmyaccomplishments, past and present. iii Acknowledgement I wish to thank my advisor, Dr. Lothar Birk, Associate Professor of Naval Architecture and Marine Engineering at the University of New Orleans, who gave me an opportunity to do my graduate research work under his able and much sought-after mentorship. I have immensely benefited from his expertise in the field, and his guidance through the course of this thesis. This thesis would not have been complete without his expert advice and unfailing patience. I am very grateful to Dr. William Vorus, Professor of Naval Architecture and Marine Engineering, and Dr. George Ioup, University Research Professor of Department of Physics, for their participation in my thesis. I would like to take this opportunity to also thank Dr. Jeffery Falzarano, now a professor at Texas A&M University, who motivated me towards research work during my undergraduate studies at the University of New Orleans. This work was supported by the Louisiana Board of Regents Support Fund Research & Development Program. And, last but not least, I would also like to express a special word of thanks to the present faculty and staff of the University of New Orleans. Their unselfish dedication, in the aftermath of Hurricane Katrina, has been invaluable to the UNO community as we recover and rebuild. iv Table of Contents List of Figures vii Nomenclature ix Abstract x 1 Introduction 1 1.1 Panel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 The Method 9 2.1 Surfaces and the Source Strength . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Body Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Free-Surface Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Wave-making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 The Quasi-Singular Integral 27 3.1 The Integrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Division and Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Effect of Division and Transformation . . . . . . . . . . . . . . . . . . . . . . 37 4 Results 42 4.1 Double Body Flow Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1 Double Body Flow for a Sphere . . . . . . . . . . . . . . . . . . . . . 43 4.1.2 Double Body Flow for a Wigley Hull . . . . . . . . . . . . . . . . . . 48 4.2 Linearized Free-Surface Problem . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2.1 Linearized Free-Surface For a Sphere . . . . . . . . . . . . . . . . . . 51 5 Conclusion and Future work 53 Bibliography 55 Vita 56 v List of Figures 1.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Source surface transformation from global to parametric domain. And re- transformationofthesourcestrengthdistributionoverthesourcesurfacefrom parametric to global domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Body surface and the source surface (offset has been exaggerated) . . . . . . 14 2.3 Free-surface source surface set-up . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 Transformation of a quarter of a sphere into the parametric domain. . . . . . 28 3.2 Transformation of a half Wigley hull into the parametric domain. . . . . . . 28 3.3 Original X component of the integral for double body flow around a sphere. . 30 3.4 Original Y component of the integral for double body flow around a sphere. . 31 3.5 Original Z component of the integral for double body flow around a sphere. . 31 3.6 Element sub-division to eliminate the singularity [21]. . . . . . . . . . . . . . 34 3.7 Surface sub-division of Y velocity component of a source surface for double body flow of a sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.8 Transformation Jacobian for ∆(1) . . . . . . . . . . . . . . . . . . . . . . . . 36 3.9 Original Y velocity component for ∆(1) . . . . . . . . . . . . . . . . . . . . . 38 3.10 Transformed Y velocity component for ∆(1) . . . . . . . . . . . . . . . . . . 38 3.11 Original Y velocity component for ∆(2) . . . . . . . . . . . . . . . . . . . . . 39 3.12 Transformed Y velocity component for ∆(2) . . . . . . . . . . . . . . . . . . 39 3.13 Original Y velocity component for ∆(3) . . . . . . . . . . . . . . . . . . . . . 40 3.14 Transformed Y velocity component for ∆(3) . . . . . . . . . . . . . . . . . . 40 3.15 Original Y velocity component for ∆(4) . . . . . . . . . . . . . . . . . . . . . 41 3.16 Transformed Y velocity component for ∆(4) . . . . . . . . . . . . . . . . . . 41 4.1 Source distribution for a quarter of a sphere with double body flow (α = 0.9). 44 4.2 Cp for a sphere with double body flow (α = 0.9). . . . . . . . . . . . . . . . 45 4.3 Velocity field on a sphere with double body flow (α = 0.9). . . . . . . . . . . 45 4.4 Normal velocity on a sphere with double body flow (α = 0.9). . . . . . . . . 46 4.5 Comparison of C for different values of α with the analytical result for a p sphere with double body flow. (values are at z=0 for a sphere of unit radius) 47 4.6 Cp for a Wigley hull with double body flow (3×3 vertices). . . . . . . . . . 48 4.7 Velocity field on a Wigley hull with double body flow (3×3 vertices). . . . . 48 4.8 Cp for a Wigley hull with double body flow (4×3 vertices). . . . . . . . . . 48 vi 4.9 Velocity field on a Wigley hull with double body flow (4×3 vertices). . . . . 48 4.10 Cp for a Wigley hull with double body flow (4×4 vertices). . . . . . . . . . 49 4.11 Velocity field on a Wigley hull with double body flow (4×4 vertices). . . . . 49 4.12 Cp for Wigley hull with different number of vertices for double body flow (at z = -1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.13 Cp for Wigley hull with varying α with 3 × 3 vertices for double body flow (at z = -1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.14 Free surface elevation for a sphere . . . . . . . . . . . . . . . . . . . . . . . . 52 vii Nomenclature µ doublet strength Φ total potential φ perturbation potential φ(0) zero order wave potential φ(1) first order wave potential φ potential for the uniform onset flow ∞ σ source strength on the source surface A vector A (underscore represents a vector) n normal at point P p p point on the hull surface P hull surface vertices ij q point on the source surface Q source surface vertices ij U fluid onflow velocity (opposite of body velocity) ∞ v velocity field ζ free-surface elevation ζ(0) zero order wave elevation M total number of vertices for the surface in v N total number of vertices for the surface in u S hull surface b S source strength vertices ij viii U body velocity b n x n normal vector, ny n z S free surface F ix
Description: