New developments in multi-meson systems 1 1 William Detmold∗ 0 ThomasJeffersonNationalAcceleratorFacility,12000JeffersonAve,NewpotNews,VA23606, 2 USA n DepartmentofPhysics,CollegeofWilliamandMary,Williamsburg,VA23187,USA a J E-mail: [email protected] 3 1 Brian Smigielski DepartmentofPhysics,NationalTaiwanUniversity,Taipei,Taiwan ] t DepartmentofPhysics,CollegeofWilliamandMary,Williamsburg,VA23187,USA a l E-mail: [email protected] - p e h New developments in the study of multi-meson systems are reviewed. We highlight a new re- [ cursivealgorithmforgeneratingtherequisitecontractionsneededforstudyingcomplexsystems 1 of mesons involving large numbers of particles or multiple species of particles. First results on v 9 mixedspeciessystemsinvolvingpionsandkaonsarealsopresented. 3 6 2 . 1 0 1 1 : v i X r a TheXXVIIIInternationalSymposiumonLatticeFieldTheory,Lattice2010 June14-19,2010 Villasimius,Italy ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Newdevelopmentsinmulti-mesonsystems WilliamDetmold 1. Introduction Systems containing more than two mesons are of phenomenological interest in a number of areas from heavy ion collisions at RHIC, to the equation of state of neutron stars. In the last few years,therehasbeenaconcertedeffortbytheNPLQCDcollaborationtostudysuchsystemsfrom firstprinciplesusinglatticeQCD[1,2,3]. Muchprogresshasbeenmadeandthesestudiesenabled thefirstcalculationofathreehadroninteraction,thatbetweenthreelike-chargedpions. On the theoretical side, a number of developments have also occurred in the last few years. First, previous results for the volume dependence of the ground state energies of n boson systems [4, 5, 6] have been extended to the case of mixed species systems involving pions and kaons [8]. Secondly, a new algorithm has been presented [9] that recursively generates the quark propagator contractions for complicated systems from those of smaller systems. In principle, this method allows the calculation of systems with very large numbers of mesons (surmounting the limit of n=12particlesinpreviouscalculations)andofsystemsinvolvingmanydifferenttypesofbosons. Inthiscontribution,recentaspectsofthisprogressarehighlighted. 2. Multi-MesonInteractions It has long been known how to exploit the volume dependence of the eigen-energies of two hadron systems to extract infinite volume scattering phase shifts [10] provided that the effective range of the interaction, r is small compared to the spatial extent of the lattice volume (since r∼m−1 formostinteractions,thisconstraintisequivalenttom L(cid:29)1). Inrecentworks,thishas π π been extended to systems involving n>2 bosons [4, 5, 6] and n=3 fermions [7] in the situation where the relevant scattering length, a, is small compared to the spatial extent of the lattice. By performing a perturbative calculation involving two- and three- body hadronic interactions in a finitevolume,thegroundstateenergyofasystemofnbosonswascomputedinRefs.[4,5,6]. The shiftinenergyofnbosonsofmassM fromthenon-interactingsystemis 4πa a a 2 ∆E = nC 1− I + I2+(2n−5)J n ML3 2 πL πL (cid:40) (cid:18) (cid:19) (cid:18) (cid:19) (cid:2) (cid:3) a 3 − I3+(2n−7)IJ + 5n2−41n+63 K πL (cid:18) (cid:19) (cid:104) (cid:105) a 4 (cid:0) (cid:1) + I4−6I2J +(4+n−n2)J2+4(27−15n+n2)I K πL (cid:18) (cid:19) (cid:104) +(14n3−227n2+919n−1043)L (cid:41) (cid:105) 192a5 6πa3 +nC (T + T n) + (n+3)I 3 Mπ3L7 0 1 M3L7 (cid:20) (cid:21) +nC 1 ηL + O L−8 , (2.1) 3 L6 3 wheretheparameteraisrelated(cid:0)toth(cid:1)escatteringlength,a,andtheeffectiverange,r,by 2π a a = a − a3r 1 − I . (2.2) L3 πL (cid:18) (cid:18) (cid:19) (cid:19) 2 Newdevelopmentsinmulti-mesonsystems WilliamDetmold Thegeometricconstants,I, J, K , L,T ,thatenterintoEq.(2.1)aredefinedinRef.[6]and 0,1 nC arethebinomialcoefficients. Thethree-bodycontributiontotheenergy-shiftgiveninEq.(2.1) m L isrepresentedbytheparameterη (seeRef.[6]). 3 L Using lattice QCD calculations of these energy shifts, the parameters a and η can be ex- 3 tracted (this method was used in Refs. [1, 2, 3]). To determine the energy shifts, the multi-meson correlationfunctions(specifyingtothemulti-pionsystem) n n C (t) ∝ ∑π−(x,t) π+(0,0) , (2.3) n (cid:28)(cid:18) x (cid:19) (cid:18) (cid:19) (cid:29) arecalculated. Onalatticeofinfinitetemporalextent,1 thecombination C (t) G (t) ≡ n −t→→∞ B(n) e−∆En t , (2.4) n [C (t)]n 0 1 allows for an extraction of the ground-state energy shift, ∆E , which can then be used as input n into Eq. (2.1) to extract the scattering and interaction parameters. To compute the (n!)2 Wick contractionsinEq.(2.3),thecorrelationfunctioncanbewrittenas C (t) ∝ (cid:104)(ηΠη )n (cid:105) ∝ εα1α2..αnξ1..ξ12−n ε (Π)β1(Π)β2..(Π)βn , n β1β2..βnξ1..ξ12−n α1 α2 αn Π = ∑ S(x,t;0,0)S†(x,t;0,0) , (2.5) x where S(x,t;0,0) is a light-quark propagator. The object (block) Π is a N×N bosonic time- dependent matrix where N =12 (N =N ×N with N =4-spin and N =3-color), and η is a S C S C α twelvecomponentGrassmannvariable. Furthersimplificationsarepossibleresultinginthecorre- lation functions being written in terms of traces of powers of Π. As an example, the contractions forthe3-π+ systemgive C (t) ∝ tr[Π]3 − 3tr Π2 tr[Π] + 2tr Π3 , (2.6) 3 (cid:2) (cid:3) (cid:2) (cid:3) wherethetracesareovercolorandspinindices. 3. ContractionsforLarge(N >12)SystemsofMesons Toextendthesetypesofcalculationstosystemsofn>12mesons,ortostudysystemsofmany different types of mesons, different methods of performing the contractions of quark fields are required. Whilebetterthanthenaïvefactorialconstruction(whichscalesasn!2), theconstruction usedinSection2scalespoorlytolargenumbersofmesons,behavingatbestasn!1/2 (providedthe matrix Π is generalized to give a nonzero result). In Ref. [9], a recursive method for performing thesecontractionswasdevelopedthatallowstheextensionofthestudyofmesonsystemstolarger n and also greatly simplifies the contractions required for systems of many different species of mesons. Wewilloutlinetheconstructionbyconsideringtherecursiveapproachtothecontractions forasinglespeciesofmesonbeforereportingthegeneralcase. 1Effectsoftemporal(anti-)periodicityarediscussedinRef.[3]. 3 Newdevelopmentsinmulti-mesonsystems WilliamDetmold By rescaling the correlation functions of the single-species, single-source system considered previouslyas C (t) = (−)n n!(cid:104)R (cid:105) , (3.1) nπ+ n (theanglebracketsdenoteatraceoverspinandcolorindices)itisstraightforwardtoshowthatthe objects,R thataredefinedimplicitlyintheaboveequationsatisfyanascendingrecursion n R = (cid:104)R (cid:105)Π − nR Π. (3.2) n+1 n n withtheinitialconditionthatR =ΠasdefinedinEq.(2.5). Toseehowthisworksweexplicitly 1 constructthefirstfewterms: R = (cid:104)R (cid:105)Π − R Π = (cid:104)Π(cid:105)Π − Π2 2 1 1 (cid:104)R (cid:105) = (cid:104)Π(cid:105)2 − (cid:104)Π2 (cid:105) , 2 R = (cid:104)R (cid:105)Π − 2R Π = (cid:104)Π(cid:105)2 Π − (cid:104)Π2 (cid:105)Π − 2(cid:104)Π(cid:105)Π2 + 2Π3 3 2 2 (cid:104)R (cid:105) = (cid:104)Π(cid:105)3 − 3(cid:104)Π2 (cid:105) (cid:104)Π(cid:105) − 2(cid:104)Π3 (cid:105) , (3.3) 3 inagreementwithEq.(2.6). Descendingrecursionsalsoexist. A correlation function for a system composed of n mesons of the ith species from the jth ij sourceat(y ,0),where0≤i≤kand0≤ j≤m,isoftheform j N N 1 k C (t) = ∑ A (x,t) ... ∑ A (x,t) n 1 k (cid:42) (cid:18) x (cid:19) (cid:18) x (cid:19) n11 n1m nk1 nkm A†(y ,0) ... A†(y ,0) ... A†(y ,0) ... A†(y ,0) , (3.4) 1 1 1 m k 1 k m (cid:43) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) whereNi=∑j nij isthetotalnumberofmesonsofspeciesi,andthesubscriptinCn(t)labelsthe numberofeachspeciesfromeachsource, n n ... n 11 12 1m . . . . n = .. .. .. .. . (3.5) n n ... n k1 k2 km The A(y,t) denotes a quark-level interpolating operator A (x,t)=q (x,t) γ u(x,t), and it can i m m 5 beshownthat[9] C (t) = ∏ N! ∏(η P η )nij = (−)N (∏i Ni!) ∏i,j nij! (cid:104)T (cid:105) ,(3.6) n (cid:32) i i (cid:33) (cid:42) i,j ij (cid:43) N(cid:0)! (cid:1) n wheretheη arem×N-componentGrassmannvariables,andtheP areN×N dimensionalmatri- ij ces, where N =m×N, which are generalizations of the Π defined in Eq. (2.5) with an additional 4 Newdevelopmentsinmulti-mesonsystems WilliamDetmold speciesindex,i. Theyaredefinedas 0 0 ... 0 . . . . . . . . ... . (A) (t) (A) (t) ... (A) (t) P = i j1 i j2 i jm , ij 0 0 ... 0 . . . . . . . . ... . 0 0 ... 0 (A ) = ∑ S(x,t;y ,0)S†(x,t;y ,0) , (3.7) i ab b i a x The (A ) are N×N dimensional matrices, one for each flavor, i, and pair of source indices, a i ab and b. N =∑i Ni is the total number of mesons in the system, with N ≤N. The Tn defined implicitlyinEq.(3.6)satisfytherecursionrelation k m T = ∑ ∑ (cid:104)T (cid:105)P − N T P , (3.8) n+1rs n+1rs−1ij ij n+1rs−1ij ij i=1 j=1 where 0 0 ··· 0 . . . 1ij = .. .. ... 1 ... .. , (3.9) 0 0 ··· 0 andwherethesolenon-zerovalueisinthe(i,j)th entry. DefiningUj =∑i nij tobethenumberof mesonsfromthe jth source,itisclearthatthecorrelationfunctionvanisheswhenU >N forany j source j. These recursion relations (and those for the simpler systems also studied in Ref. [9]) allow for the calculation of arbitrarily large systems of mesons. As formulated above, the systems are restricted to contain quarks of one flavor but anti-quarks of any number of flavors 2 or vice versa. Importantlytheabovealgorithmscaleslinearlywiththetotalnumberofmesonsinthesystem. Thisrecursiveconstructionhasbeenimplementedandiscurrentlybeingusedtostudyavariety of complex meson systems that were previously not accessible. Generalisations to the case of baryonsarestraightforwardbutcumbersome. 4. MixedSpeciesMesonSystems Inthecaseofamixedsystemcomprisingnmesonsofonetypeandmmesonsofasecondtype, the results summarized in Section 2 have been generalized in Ref. [8], working to O(1/L6). The energyshiftoftheinteractingsystemfromthefreesystemdependsonthreetwo-bodyinteraction parametersandfourthree-bodyinteractionparameters. Asmightbeexpected,thefullformofthe energyshiftislengthyandwerefertheinterestedreadertotheoriginalpaper. 2Thisrestrictionisnotnecessary,butrelaxingitresultsinmuchmorecomplexsetsofrecursions. 5 Newdevelopmentsinmulti-mesonsystems WilliamDetmold These systems are currently under numerical study and preliminary results using L3×T = 203×128anisotropiccloverlatticesatapionmassof390MeVgeneratedbytheHadronSpectrum Collaborationarediscussedherein. Inordertoextracttheenergiesofthemultimesonsystems,westudythebehavioroftwopoint correlationfunctions N M N M C (t)= ∑π−(x,t) ∑K−(x,t) π+(0,t) K+(0,t) , (4.1) N,M x x (cid:68)(cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) (cid:69) wherethepionandkaoninterpolatingoperatorsaredefinedintermsofquarkfieldsasπ+(x,t)= u(x,t)γ d(x,t)andK+(x,t)=u(x,t)γ d(x,t),respectively. 5 5 AtlargeEuclideantimes,0(cid:28)t (cid:28)T,thesecorrelationfunctionsdecayexponentiallywiththe groundstateenergies,E ,ofthesystem. Theseenergiescouldthenbeusedtoconstrainthetwo- N,M and three- body interactions using the results of Ref. [8]. However, satisfying the constraint 0(cid:28) t (cid:28)T, requires taking the limit of vanishing temperature and is not typically practical in current latticecalculations. ThepresenceofthermalfluctuationsthatvanishexponentiallyasT →∞,leads, at finite temporal extent, to significantly more complex behaviour of the correlation functions in Eq.(4.1). Thegeneralformforthesecorrelationfunctionscanbestraightforwardlydeducedfrom Hamiltonianevolutionatfinitetemperatureandisgivenbythefollowing 1 M N C (t) = ∑ ∑ZN−n,M−me−(EN−n,M−m+En,m)T/2cosh E −E (t−T/2) N,M 2 n,m N−n,M−m n,m m=0n=0 (cid:16)(cid:16) (cid:17) (cid:17) +21ZNN2,,MM2 e(EN/2,M/2)T/2 δN,2lδM,2k+... (4.2) 2 2 where the last term is only present when N and M are both even numbers. The ellipsis denotes excitedstatecontributions. Thesubleadingtermsshowninthesummationcorrespondtothevarious waysonecanconnecttheN-pion,M-kaonsourceandsink,allowingforpropagationofsubsetsof hadronsaroundthetemporalboundary(variousoftheZN,M aresimplyrelated). n,m WiththelargenumberofparametersthatoccurinEq.(4.2),fittingthecorrelationfunctionsbe- comesacomplicatedendeavour. Ourcurrentanalysisstrategyemploysvariableprojection(VarPro [12,13])toeliminatethelinearparameters,theZN−n,M−m,fromtheminimisationprocedure. AsN n,m andM increase,wealsoemploythemethodofBayesianpriors[14]byprovidingsuitablephysical starting points for the value of the energies in the correlation function. A summary plot of the energyextractionsisshowninFig.1. Analysis of these correlation functions is ongoing and preliminary results are very encour- aging. The data provide statistically significant extractions of most of the two- and three- body interactions that enter the mixed-species systems. It additionally allows us to study the relation- shipsbetweentheisospinandhyperchargedensitiesandthecorrespondingchemicalpotentials. 5. Summary Systems of large numbers of mesons provide a novel form of QCD matter that is amenable to study using lattice QCD. A rich phase structure is expected and the tools and methodologies presented herein will allow a close study of these systems. These techniques also represent an 6 Matching onto EFT ˜ E =∆ E +∆ E +∆ E +Nm + Mm N,M N M N,M π K Newdevelopmentsinmulti-mesonsystems WilliamDetmold ∆E N,M ! "# M$ 10 5 0 3 !E!N,M" 2 1 0 0 5 N 10 Figure1: EnergiesofsystemsofN pioBnrisananSdmiMgieklsakoinsexMtraancyte-Mdefsroonmsyosutermcsalincualabtoioxns. T2h2e/2v9erticalextent oftheshadedboxescorrespondstheuncertaintyinthedeterminationoftheenergies. important step towards the complexity frontier that must be confronted if lattice QCD is to be appliedtothephysicsofnuclei. References [1] S.R.Beane,W.Detmold,T.C.Luu,K.Orginos,M.J.SavageandA.Torok,Phys.Rev.Lett.100, 082004(2008)[arXiv:0710.1827[hep-lat]]. [2] W.Detmold,etal.,Phys.Rev.D78,014507(2008). [3] W.Detmold,K.Orginos,M.J.SavageandA.Walker-Loud,Phys.Rev.D78,054514(2008). [4] S.R.Beane,W.DetmoldandM.J.Savage,Phys.Rev.D76,074507(2007). [5] S.Tan,arXiv:0709.2530[cond-mat.stat-mech]. [6] W.DetmoldandM.J.Savage,Phys.Rev.D77,057502(2008)[arXiv:0801.0763[hep-lat]]. [7] T.Luu,PoSLATTICE2008,246(2008)[arXiv:0810.2331[hep-lat]]. [8] B.SmigielskiandJ.Wasem,Phys.Rev.D79,054506(2009)[arXiv:0811.4392[hep-lat]]. [9] W.DetmoldandM.J.Savage,arXiv:1001.2768[hep-lat]. [10] M.Lüscher,Commun.Math.Phys.105,153(1986). [11] W.DetmoldandB.Smigielski,inpreparation. [12] L.Kaufman,BIT15,49,1975. [13] G.T.Fleming,hep-lat/0403023. [14] G.P.Lepage,etal.,Nucl.Phys.Proc.Suppl.106,12-20(2002).[hep-lat/0110175]. 7