ebook img

Axiomatic Thinking II PDF

293 Pages·2022·4.003 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Axiomatic Thinking II

Fernando Ferreira · Reinhard Kahle · Giovanni Sommaruga Eds. Axiomatic Thinking II Axiomatic Thinking II PhotographyoftheparticipantsoftheannualmeetingoftheSwissMathematicalSociety1917, takenatthebacksideoftheLandesmuseuminZurich.Hilbertisstandinginthecenterofthefirst row.Source:BildarchivoftheETHZurich.https://doi.org/10.3932/ethz-a-000046430 PeoplewhichwereidentifiedbyGeorgePólya:1Fehr;2Carathéodory;3Grossmann;4Hilbert; 5 Gaiser; 6 Mrs. Weyl; 7 Weyl; 8 Bernays; 9 Plancherel; 10 Gonseth; 11 Speiser; 12 Spiess; 13Hecke;14DuPasquier.Thedrawingittakenfrom:GeorgePólya.ThePólyapicturealbum: encountersofamathematician,Birkhäuser,1987, p.14 · · Fernando Ferreira Reinhard Kahle Giovanni Sommaruga Editors Axiomatic Thinking II Editors FernandoFerreira ReinhardKahle DepartamentodeMatemática CarlFriedrichvonWeizsäcker-Zentrum FaculdadedeCiências UniversitätTübingen UniversidadedeLisboa Tübingen,Germany Lisboa,Portugal GiovanniSommaruga DepartmentofMathematics ETHZurich Zurich,Switzerland ISBN978-3-030-77798-2 ISBN978-3-030-77799-9 (eBook) https://doi.org/10.1007/978-3-030-77799-9 MathematicsSubjectClassification:03-06,03-03,03A05,03A10 ©SpringerNatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This book originates with two events commemorating the centenary of David Hilbert’s seminal talk on Axiomatic Thinking (Axiomatisches Denken) which he delivered on September 11, 1917, at Zurich University for the Swiss Mathemat- icalSociety.Thistalkmarksarguablythebirthofprooftheoryasitwasconceived by David Hilbert in the 1920s. It makes clear that the formalistic endeavor which onemayfindinthedevelopmentofmathematicallogicbytheHilbertschoolis,at best,atechnicalingredientofamuchlargerenterprisewhichattemptstobaseevery sciencedeservingthispredicateonatransparentframeworkofconcepts(Fachwerk vonBegriffen),developedandinvestigatedbytheaxiomaticmethod. OnSeptember14–15,2017,ajointmeetingoftheSwissMathematicalSociety andtheSwissSocietyforLogicandPhilosophyofScienceonAxiomaticThinking took place at the University of Zurich, Switzerland, the place where Hilbert had spoken100yearsago.Itwasfollowed,onOctober11–14,2017,byaconferenceon thesametopicattheAcademiadasCiênciasdeLisboaandFaculdadedeCiências eTecnologiadaUniversidadeNovadeLisboainLisbonwhichwasalsotheannual meetingoftheAcadémieInternationaledePhilosophiedesSciences.Thismeeting includedaPanelDiscussionontheFoundationsofMathematicswithPeterKoellner, MichaelRathjen,andMarkvanAttenasinvitedpanelists. Thecurrentvolumescontaincontributionsofspeakersofbothmeetingsandalso papersbyotherresearchersinthefield.Inaccordancewiththebroadrangeoftopics addressed by Hilbert, the articles in Vol. I focus on reflections on the History and PhilosophyofAxiomaticThinking;Vol.IIprovidesinPartIexamplesofdevelop- mentsofaxiomaticthinkinginLogic,especiallyinProofTheory,inspiredbyHilbert’s ideas;PartIIisconcernedwithapplicationsoftheaxiomaticmethodinMathematics; and Part III addresses the use of the axiomatic method in other sciences, namely ComputerScience,Physics,andTheology. OurdearfriendThomasStrahm,aninspiredlogician,followedthedevelopment ofthisbookclosely.Butsadlyheisnotheretoseeitspublication.ThomasStrahm v vi Preface diedattheendofApril,2021.Wededicatethisbooktohim—anexcellentlogician, andevenmoreakind,sensitive,humorousandwonderfulfriend. Lisboa,Portugal FernandoFerreira Tübingen,Germany ReinhardKahle Zurich,Switzerland GiovanniSommaruga March2021 Acknowledgements The editors are grateful to all speakers in Zurich and Lisbon who contributed to the success of the two meetings, as well as to the meetings’ co-organizers, Thomas Kappeler and Viktor Schroeder in Zurich, and Gerhard Heinzmann, João Cordovil, João Enes, Mirko Engler, António Fernandes, Gilda Ferreira, Emanuele Frittaion, Nuno Jerónimo, Isabel Oitavem, Cecília Perdigão, and Gabriele Pulcini in Lisbon. The meeting in Zurich was supported by the Swiss Mathematical Society SMS, the Swiss Society for Logic and Philosophy of Science SSLPS, the Swiss Academy of Sciences SCNAT, and the Institute of Mathematics, Univer- sity of Zurich, which is gratefully acknowledged. Equally, many thanks for the support of the conference in Lisbon to the Académie Internationale de Philoso- phie des Sciences AIPS; the Academia das Ciências de Lisboa; the Centro Inter- nacional de Matemática, CIM; and the following research centres: Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, CMAF-CIO; Centro de Matemática e Aplicações, CMA; Centre for Philosophy of Sciences of theUniversityofLisbon,CFCUL.ThePortugueseScienceFoundation (Fundação para a Ciência e a Tecnologia, FCT) supported the conference through the projects,UID/FIL/00678/2013,UID/MAT/00297/2013,UID/MAT/04561/2013,and PTDC/MHC-FIL/2583/2014 (Hilbert’s 24th Problem). For the preparation of the currentvolumes,thefirsteditoracknowledgesthesupportbythePortugueseScience Foundation(UIDB/04561/2020)andthesecondeditorwasalsosupportedbytheUdo KellerFoundation. Pro domo, we’d like to acknowledge Reinhard’s enormous efforts and drive withoutwhichthisbookmightstillbeamereproject.(FernandoandGiovanni). vii Contents Overview of Vol. 1 1 AxiomatischesDenken ......................................... 1 DavidHilbert PartI HistoryandPhilosophyI(1) 2 Hilbert’sAxiomatischesDenken ................................. 23 ReinhardKahleandGiovanniSommaruga 3 ScopeandLimitsofAxiomatics ................................ 39 PaulBernays 4 TheSemanticFunctionoftheAxiomaticMethod ................. 43 EvandroAgazzi 5 Aristotle’sRelations:AnInterpretationinCombinatoryLogic .... 63 ErwinEngeler 6 TheTwoSidesofModernAxiomatics:DedekindandPeano, HilbertandBourbaki .......................................... 83 JoséFerreirós 7 NotesforaSeminarinAxiomaticReasoning ..................... 105 BarryMazur 8 Axiomatic Thinking, Identity of Proofs and the Quest foranIntensionalProof-TheoreticSemantics .................... 145 PeterSchroeder-Heister 9 ProofsasObjects .............................................. 165 WilfriedSieg 10 WhereDoAxiomsComeFrom? ................................ 185 CraigSmoryn´ski 11 PanelDiscussionontheFoundationsofMathematics ............. 193 FernandoFerreira ix Contents PartI LogicI(2) 1 AFrameworkforMetamathematics ............................ 3 LorenzHalbeisen 2 SimplifiedCutEliminationforKripke-PlatekSetTheory ......... 9 GerhardJäger 3 OnthePerformanceofAxiomSystems .......................... 35 WolframPohlers 4 Well-Ordering Principles in Proof Theory and Reverse Mathematics .................................................. 89 MichaelRathjen PartII MathematicsII(2) 5 ReflectionsontheAxiomaticApproachtoContinuity ............. 131 JohnL.Bell 6 AbstractGenerality,Simplicity,Forgetting,andDiscovery ........ 145 ColinMcLarty 7 VarietiesofInfinitenessintheExistenceofInfinitelyMany Primes ....................................................... 157 VictorPambuccian 8 AxiomaticsasaFunctionalStrategyforComplexProofs:The CaseofRiemannHypothesis ................................... 165 JeanPetitot PartIII OtherSciencesIII(2) 9 WhatistheChurch-TuringThesis? ............................. 199 UdiBokerandNachumDershowitz xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.