Average Entropy of a Subsystem Siddhartha Sen∗ School of Mathematics, University of Dublin, Trinity College, Dublin, Ireland (February 1, 2008) mn 1 ψ(mn+1)=−C+ , k It was recently conjectured by D. Page that if a quantum kX=1 system of Hilbert space dimension nm is in a random pure C being Euler’s constant, and state then the average entropy of a subsystem of dimension mn mwherem≤nisSmn = k=n+1(1/k)−(m−1)/2n.Inthis m letter this conjecture is prPoved. Q(q ,...,q )dq ...dq = (q −q )2 e−qiqn−mdq . 1 m 1 m i j i i 6 PACS numbers: 05.30.ch,03.65.-w,05.90.+m 1≤iY<j≤m iY=1 9 9 On the basis of evaluating S for m = 2, 3, 4, 5 us- mn 1 ing mathematica 2.0, Page conjectured that the exact InarecentletterPage[1]consideredasystemABwith n result for S was Hilbertspacedimensionmn. Thesystemconsistedoftwo mn a J subsystemsAandB ofdimensionsmandnrespectively. mn 1 (m−1) 4 Page calculated the average Smn = − , k 2n 2 k=Xn+1 Smn =<SA > 1 but was not able to prove that this was the case. In this v of the entropy S over all pure states ρ =|Ψ >< Ψ | of letter, we will prove this conjecture. A 2 the total system where S = − Tr ρ lnρ and ρ , the We first observe that the van der Monde determinant A A A A 3 densitymatrixofsubsystemA,isobtainedbytakingthe defined by 1 partial trace of the full density matrix ρ over the other 1 0 subsystem, that is, ρA =TrBρ. ∆(q1,...,qm) ≡ (qi−qj) 6 The average was defined with respect to the unitary i≤iY<j≤m 9 invariant Haar measure on the space of unitary vectors / may be written h | Ψ > in the mn dimensional Hilbert space of the total -t system. Thequantity(lnm−Smn)wasusedtodefinethe 1 ··· 1 p averageinformationofthesubsystemA.Itisameasureof q ··· q (cid:12) 1 m (cid:12) he theinformationregardingthefactthattheentiresystem ∆(q1,...,qm)=(cid:12)(cid:12) ... ... ... (cid:12)(cid:12) . is a pure state that is contained in the subsystem m. (cid:12) (cid:12) v: Using earlier work [2,3] in this area, Page was led to (cid:12)(cid:12)q1m−1 ··· qmm−1(cid:12)(cid:12) i (cid:12) (cid:12) X consider the probability distribution of the eigenvalues (cid:12) (cid:12) We next observe that ∆(q ,...,q ) can be written as of ρ for the random pure states ρ of the entire system. 1 m r A a He used p (q ) ··· p (q ) 0 1 0 m p (q ) ··· p (q ) (cid:12) 1 1 1 m (cid:12) P(p1,...,pmm)dp1...dpm m ∆(q1,...,qm)=(cid:12)(cid:12)(cid:12) ... ... ... (cid:12)(cid:12)(cid:12) (1) =Nδ(1− p ) (p −p )2 pn−mdp (cid:12)p (q ) ··· p (q )(cid:12) i i j k k (cid:12) m−1 1 m−1 m (cid:12) Xi=1 1≤iY<j≤m kY=1 (cid:12)(cid:12) (cid:12)(cid:12) for anyset ofpolynomialsp (q), k =0,...,m−1,which k where pi was an eigenvalue of ρA and the normalisation have the property, p0(q)=1, and constant for this probability distribution was given only implicitly by the requirement that the total probability pk(q)=qk+Ck−1qk−1+···+C0, k =1,...,m−1. integrated to unity. Page then showed that the average This immediately follows from the fact that the value of m adeterminantdoes notchangeif the multiple ofany one S =− p lnp P(p ,...,p )dp ...dp mn i i 1 m 1 m row is added to a different row. Z (cid:18) (cid:19) Xi=1 We now choose polynomials pα(q) judiciously. We in- =ψ(mn+1)− mi=1qilnqi Qdq1...dqm troduce orthogonal polynomialskpαk(q) with the proper- R(cid:0)Pmn Qdq(cid:1) ...dq ties: 1 m R where q =rp for i=1,...,m, r is positive [1], and 1. pα(q) = qk+C qk−1+···+Cα, pα(q)=1. i i k k−1 0 0 1 2. ∞dqe−qqαpα (q)pα (q)=hα δ , α=n−m. where we use the fact that ψ(z) = 1 dΓ(z). We now 0 k1 k2 k1 k1k2 Γ(z) dz R observe that Polynomialswith these properties are well known. They are the generalised Laguerre polynomials defined by [4] ψ(mn+1) eq dk 1 m−1 pα(q)= (−1)k e−qqk+α . − [1+(1+2k+n−m)ψ(1+k+n−m)] k qα dqk mn (cid:0) (cid:1) kX=0 We also note, for later use, that [4] mn 1 (m−1) = + . (7) k k 2n pα(q)= k (−1)r Γ(k+α+1) qk−r (2) k=Xn+1 k Xr=0(cid:18)r(cid:19) Γ(k+α−r+1) This follows by examining the coefficient of 1 in r ∞ m−1 dqe−qqαpα (q)pα (q)=Γ(k +1)Γ(k +α+1)δ (1+2k+n−m)ψ(1+k+n−m) Z k1 k2 1 1 k1k2 0 kX=0 (3) and writing ∞ k+n−m 1 dqqa−1e−qpbk(q)=(1−a+b)kΓ(a)(−1)k (4) ψ(1+k+n−m)=−C+ . Z r 0 Xr=1 recalling that, (1 − a+ b) = (1 −a + b)(1− a +b + k The third expression in Eq. (6) above is 1)...(1−a+b+k−1). Writing ∆(q ,...,q ) in terms 1 m othfepsαke(qp)olaysnionmEiaql.s1itainmdmuesidnigattehlye oforltlhoowgsotnhaaltp:ropertyof 2 m−1 k k (−1)k+r Γ(k+n−m+1) mn (cid:18)r(cid:19) Γ(k+n−m−r+1) kX=0 Xr=0 S =ψ(mn+1) mn × ψ(k+n−m+1)−ψ(k+n−m−r+1) − 1 m−1 ∞ e−q(qlnq)qn−m pmk−n(q) 2dq . ×(cid:2)(r−k−1)kΓ(k+n−m−r+2) (cid:3) mn Xk=0 Z0 Γ(k+1)Γ(k+(cid:0)1+n−m(cid:1)) Γ(k+1)Γ(k+n−m+1) m−1 We thus need to evaluate the integral 2 k = (−1)2k+1 Ik = ∞(qlnq)qn−m pm−n(q) 2e−qdq. mn Xk=0 (cid:18)1(cid:19) nm Z k (m−1) 0 (cid:0) (cid:1) =−2 . (8) 2n We first introduce ∞ Since (r−k−1)k = 0, for all r 6=0 and r 6=1, and also Jk(α)= qα+1 pαk(q) 2e−qdq. ψ(k+n−m+1)−ψ(k+n−m−r+1)=0 whenr =0, Z 0 (cid:0) (cid:1) we obtain This integral is easily evaluated. We have mn 1 (m−1) Jk(α)=Γ(k+1)Γ(k+α+2)+k2Γ(k)Γ(k+α+1) (5) Smn = k − 2n (9) k=Xn+1 and we now note that as conjectured by Page. dJk(α) ∞ dpα This work is part of project SC/218/94 supported by Ik = −2 dqqα+1e−qpα k . nm (cid:20) dα Z k dα (cid:21) Forbairt. 0 α=n−m Evaluating these two terms using Eqs. (2), (3), (4), and (5) we find S =ψ(mn+1) mn m−1 1 − 1+(1+2k+n−m)ψ(k+n−m+1) ∗ Electronic address: [email protected] mn kX=0(cid:2) (cid:3) [1] D. N.Page, Phys. Rev.Lett. 71, 1291 (1993). m−1 k [2] E. Lubkin,J. Math. Phys. 19, 1028 (1978). 2 k Γ(k+n−m+1) + (−1)k+r [3] S. Lloyd and H. Pagels, Ann. Phys. (N. Y.) 188, 186 mn (cid:18)r(cid:19) Γ(k+n−m−r+1) kX=0 Xr=0 (1988). × ψ(k+n−m+1)−ψ(k+n−m−r+1) [4] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, IntegralsandSeriesVol.2, GordonandBreachPublishers (cid:2)(r−k−1) Γ(k+n−m−r+2) (cid:3) k (1988). × (6) Γ(k+1)Γ(k+n−m+1) 2