ebook img

Autonomous Navigation in Complex Indoor And Outdoor Environments with Micro Aerial Vehicles PDF

187 Pages·2016·9.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Autonomous Navigation in Complex Indoor And Outdoor Environments with Micro Aerial Vehicles

AUTONOMOUSNAVIGATIONINCOMPLEXINDOORANDOUTDOOR ENVIRONMENTSWITHMICROAERIALVEHICLES ShaojieShen ADISSERTATION in ElectricalandSystemsEngineering PresentedtotheFacultiesoftheUniversityofPennsylvania in PartialFulfillmentoftheRequirementsforthe DegreeofDoctorofPhilosophy 2014 VijayKumar,SupervisorofDissertation UPSFoundationProfessorofMechanicalEngineeringandAppliedMechanics NathanMichael,Co-SupervisorofDissertation AssistantResearchProfessorofRobotics SaswatiSarkar,GraduateGroupChairperson ProfessorofElectricalandSystemsEngineering DissertationCommittee: DanielD.Lee,ProfessorofElectricalandSystemsEngineering VijayKumar,ProfessorofMechanicalEngineeringandAppliedMechanics NathanMichael,AssistantResearchProfessorofRobotics DavideScaramuzza,AssistantProfessorofRobotics Acknowledgments This thesis will not be possible without the support of many people. I would first like to thank my advisors Vijay Kumar and Nathan Michael, for all their support and guidance throughout my graduate studies at Penn. I would also like to thank my thesis committee members Daniel Lee and Davide Scaramuzza, for taking the time to serve on my com- mittee. Additionally, I would like to thank fellow and past members of the Multi-Robot Systems Lab (MRSL), as well as others in the GRASP lab, for many great technical discussions and fun time. Specially, I would like to thank Kartik Mohta and Yash Mul- gaonkarfortheirhelpinmakinganddebuggingmanyroboticssystems. I am indebted to my parents for their love and support over years across continents and oceans. Last but not least, I thank my wife, Shuangyu, who has been with me every momentthroughallupsanddowns. ii ABSTRACT AUTONOMOUSNAVIGATIONINCOMPLEXINDOORANDOUTDOOR ENVIRONMENTSWITHMICROAERIALVEHICLES ShaojieShen VijayKumar NathanMichael Micro aerial vehicles (MAVs) are ideal platforms for surveillance and search and rescue in confined indoor and outdoor environments due to their small size, superior mobil- ity, and hover capability. In such missions, it is essential that the MAV is capable of autonomous flight to minimize operator workload. Despite recent successes in commer- cialization of GPS-based autonomous MAVs, autonomous navigation in complex and possibly GPS-denied environments gives rise to challenging engineering problems that requireanintegratedapproachtoperception,estimation,planning,control,andhighlevel situationalawareness. Amongthese,stateestimationisthefirstandmostcriticalcompo- nent for autonomous flight, especially because of the inherently fast dynamics of MAVs and the possibly unknown environmental conditions. In this thesis, we present method- ologies and system designs, with a focus on state estimation, that enable a light-weight off-the-shelf quadrotor MAV to autonomously navigate complex unknown indoor and outdoor environments using only onboard sensing and computation. We start by de- veloping laser and vision-based state estimation methodologies for indoor autonomous flight. Wetheninvestigatefusionfromheterogeneoussensorstoimproverobustnessand enable operations in complex indoor and outdoor environments. We further propose es- timation algorithms for on-the-fly initialization and online failure recovery. Finally, we present planning, control, and environment coverage strategies for integrated high-level autonomy behaviors. Extensive online experimental results are presented throughout the thesis. Weconcludebyproposingfutureresearchopportunities. iii Contents 1 Introduction 1 1.1 ResearchProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 AutonomousFlightinGPS-deniedEnvironments . . . . . . . . . 3 1.1.2 Multi-SensorFusionforAutonomousFlight . . . . . . . . . . . . 3 1.1.3 EstimatorInitializationandFailureRecovery . . . . . . . . . . . 4 1.1.4 PlanningandControl . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.5 AutonomousEnvironmentCoverage . . . . . . . . . . . . . . . . 5 1.2 ThesisOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 OverviewofExperimentalPlatforms . . . . . . . . . . . . . . . . . . . . 8 1.4 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 ScientificBackgroundandLiteratureReview 13 2.1 AutonomousFlightinGPS-deniedEnvironments . . . . . . . . . . . . . 13 2.2 IncrementalMotionEstimation . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 SimultaneousLocalizationandMapping . . . . . . . . . . . . . . . . . . 15 2.4 Multi-SensorFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 MonocularVisual-InertialStateEstimation . . . . . . . . . . . . . . . . 18 2.6 EstimatorInitializationandFailureRecovery . . . . . . . . . . . . . . . 19 2.7 AutonomousEnvironmentCoverage . . . . . . . . . . . . . . . . . . . . 21 3 Laser-BasedAutonomousIndoorNavigation 24 iv 3.1 PoseEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2 2DPoseEstimation . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.3 AltitudeEstimation . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 EKF-basedSensorFusionforControl . . . . . . . . . . . . . . . . . . . 28 3.3 SimultaneousLocalizationandMapping . . . . . . . . . . . . . . . . . . 29 3.3.1 EnvironmentRepresentation . . . . . . . . . . . . . . . . . . . . 30 3.4 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.1 EvaluatingEstimatorPerformance . . . . . . . . . . . . . . . . . 31 3.4.2 NavigationinConfinedMulti-FloorIndoorEnvironments . . . . 31 3.4.3 LargeScaleMappingAcrossMultipleFloors . . . . . . . . . . . 36 3.4.4 PublicDemonstration . . . . . . . . . . . . . . . . . . . . . . . 37 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Vision-BasedStateEstimationandAutonomousFlight 40 4.1 FeatureDetectionandTracking . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 PoseEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 OrientationEstimation . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.2 PositionEstimation . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.1 LocalMapUpdate . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.2 ScaleRecovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.3 GlobalMapping . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 UKF-BasedSensorFusion . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5.1 AutonomousTrajectoryTrackingwithGroundTruth . . . . . . . 52 4.5.2 HighSpeedStraightLineTracking . . . . . . . . . . . . . . . . 52 4.5.3 NavigationofIndoorEnvironmentswithLargeLoops . . . . . . 54 4.5.4 AutonomousNavigationinComplexOutdoorEnvironments . . . 57 v 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Multi-SensorFusionforIndoorandOutdoorOperations 60 5.1 Multi-SensorSystemModel . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1.1 AbsoluteMeasurements . . . . . . . . . . . . . . . . . . . . . . 62 5.1.2 RelativeMeasurements . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 UKF-basedMulti-SensorFusion . . . . . . . . . . . . . . . . . . . . . . 63 5.2.1 StateAugmentationforMultipleRelativeMeasurements . . . . . 64 5.2.2 StatisticalLinearizationforUKF . . . . . . . . . . . . . . . . . . 65 5.2.3 StatePropagation . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2.4 MeasurementUpdate . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2.5 DelayedandOut-of-OrderMeasurementUpdate . . . . . . . . . 68 5.3 HandlingGlobalPoseMeasurements . . . . . . . . . . . . . . . . . . . . 69 5.4 ImplementationDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.4.1 AbsoluteMeasurements . . . . . . . . . . . . . . . . . . . . . . 72 5.4.2 RelativeMeasurement-LaserOdometry . . . . . . . . . . . . . 74 5.4.3 RelativeMeasurement-VisualOdometry . . . . . . . . . . . . . 75 5.5 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.5.1 EvaluationofEstimatorPerformance . . . . . . . . . . . . . . . 76 5.5.2 AutonomousFlightinIndoorandOutdoorEnvironments . . . . . 76 5.5.3 AutonomousFlightinTree-LinedCampus . . . . . . . . . . . . 77 5.6 BenefitsandLimitations . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6 InitializationandFailureRecoveryforMonocularVisual-InertialSystems 84 6.1 LinearSlidingWindowVINSEstimator . . . . . . . . . . . . . . . . . . 85 6.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.1.2 LinearRotationEstimation . . . . . . . . . . . . . . . . . . . . . 87 6.1.3 LinearSlidingWindowEstimator . . . . . . . . . . . . . . . . . 88 vi 6.1.4 IMUMeasurementModel . . . . . . . . . . . . . . . . . . . . . 89 6.1.5 CameraMeasurementModel . . . . . . . . . . . . . . . . . . . . 90 6.2 NonlinearOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2.2 IMUMeasurementModel . . . . . . . . . . . . . . . . . . . . . 93 6.2.3 CameraMeasurementModel . . . . . . . . . . . . . . . . . . . . 96 6.3 HandlingScaleAmbiguityviaTwo-WayMarginalization . . . . . . . . . 97 6.4 InitializationandFailureRecovery . . . . . . . . . . . . . . . . . . . . . 99 6.5 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.6 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.6.1 Real-TimeImplementation . . . . . . . . . . . . . . . . . . . . . 104 6.6.2 ImplementationDetailsandChoiceofParameters . . . . . . . . . 105 6.6.3 InitializationPerformance . . . . . . . . . . . . . . . . . . . . . 107 6.6.4 AutonomousHovering . . . . . . . . . . . . . . . . . . . . . . . 110 6.6.5 AutonomousTrajectoryTracking . . . . . . . . . . . . . . . . . 111 6.6.6 AutonomousFlightinIndoorEnvironments . . . . . . . . . . . . 116 6.6.7 StateEstimationinLarge-ScaleEnvironments . . . . . . . . . . . 120 6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7 PlanningandControl 127 7.1 FeedbackControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.2 HighLevelPlanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.3 MinimumJerkTrajectoryGeneration . . . . . . . . . . . . . . . . . . . 129 7.4 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8 AutonomousThree-DimensionalEnvironmentCoverage 134 8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.2.1 NotesonNotation . . . . . . . . . . . . . . . . . . . . . . . . . 136 vii 8.2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.3 TheSDEEAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.3.1 Particle-basedRepresentationofFreeSpace . . . . . . . . . . . . 140 8.3.2 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.3.3 ParticleDynamics . . . . . . . . . . . . . . . . . . . . . . . . . 142 8.3.4 FrontierExtraction . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.3.5 GoalQueuingandAlgorithmTermination . . . . . . . . . . . . . 147 8.3.6 HeuristicsforImprovedPerformance . . . . . . . . . . . . . . . 147 8.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.5.1 ComparisontoFrontier-basedExploration . . . . . . . . . . . . . 149 8.5.2 SimulationResults . . . . . . . . . . . . . . . . . . . . . . . . . 150 8.5.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . 153 8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9 ConclusionandFutureWork 158 9.1 SummaryofContributions . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Bibliography 162 viii List of Figures 1.1 Flowoftopicsandstructureofanavigationsystem . . . . . . . . . . . . 7 1.2 Listofplatforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Comparisonofstateestimationapproaches . . . . . . . . . . . . . . . . 20 3.1 Diagramoflaser-basedstateestimation . . . . . . . . . . . . . . . . . . 25 3.2 Laser-basedaltitudeestimation . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Laser-basedtrajectorytracking . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Laser-basedhovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 Mapsgeneratedduringlaser-basednavigation . . . . . . . . . . . . . . . 34 3.6 Imagesoflaser-basednavigation . . . . . . . . . . . . . . . . . . . . . . 35 3.7 Mapgenerationacrossthreefloorsofanindoorenvironment. . . . . . . . 36 3.8 Publicdemonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1 Diagramoftheproposedvision-basedstateestimator . . . . . . . . . . . 41 4.2 Camerageometrynotaion . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Datastructureforfeaturestorage . . . . . . . . . . . . . . . . . . . . . . 45 4.4 Localizationerrordistribution . . . . . . . . . . . . . . . . . . . . . . . 46 4.5 Visualscalechangesduringflight . . . . . . . . . . . . . . . . . . . . . 49 4.6 Vision-basedtrajectorytracking . . . . . . . . . . . . . . . . . . . . . . 53 4.7 Snapshotsofvision-basedtrajectorytracking . . . . . . . . . . . . . . . 54 4.8 Vision-basedhighspeedlinetracking . . . . . . . . . . . . . . . . . . . 55 4.9 3Dmapfromindoorexperiment . . . . . . . . . . . . . . . . . . . . . . 56 ix 4.10 Snapshotofindoorenvironment . . . . . . . . . . . . . . . . . . . . . . 57 4.11 3Dmapfromoutdoorexperiment . . . . . . . . . . . . . . . . . . . . . 58 4.12 Onboardimagesfromoutdoorexperiment . . . . . . . . . . . . . . . . . 58 5.1 Delayedandout-of-ordermeasurementupdate . . . . . . . . . . . . . . . 69 5.2 DirectfusionofGPSmeasurements . . . . . . . . . . . . . . . . . . . . 71 5.3 IndirectfusionofGPSmeasurements . . . . . . . . . . . . . . . . . . . 71 5.4 Multi-sensorsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.5 Evaluationofmulti-sensorfusionwithgroundtruth . . . . . . . . . . . . 76 5.6 Imagesofautonomousnavigationinanindustrialcomplex . . . . . . . . 78 5.7 Vehicletrajectorywhilenavigatinginanindustrialcomplex . . . . . . . . 79 5.8 Sensoravailabilityduringautonomousnavigation . . . . . . . . . . . . . 79 5.9 CovariancechangesduringGPSoutage . . . . . . . . . . . . . . . . . . 80 5.10 Impactofsensoravailabilityonstateestimationuncertainty . . . . . . . . 81 5.11 Exampleimagesofatree-linedenvironment . . . . . . . . . . . . . . . . 81 5.12 Vehicletrajectorywhilenavigatinginatree-linedenvironment . . . . . . 82 6.1 Two-waymarginalization . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2 Diagramforinitializationandfailurerecovery . . . . . . . . . . . . . . . 101 6.3 VINSsimulationenvironment . . . . . . . . . . . . . . . . . . . . . . . 103 6.4 VINSsimulationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.5 Initializationwithoutdepthinformation . . . . . . . . . . . . . . . . . . 108 6.6 On-the-flyinitialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.7 Convergenceofnonlinearoptimization . . . . . . . . . . . . . . . . . . . 109 6.8 Hoverperformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.9 Hovervelocitycomparison . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.10 Trajectorytrackingperformance . . . . . . . . . . . . . . . . . . . . . . 114 6.11 Trajectorytrackingerror . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.12 Onboardimagesfromautonomousindoorflight . . . . . . . . . . . . . . 118 x

Description:
Dissertation Committee: Daniel D. Lee, Professor of Electrical and Systems Engineering . 4.5.3 Navigation of Indoor Environments with Large Loops 54 .. is a crucial step towards fail-safe navigation systems. The problem is
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.