Table Of ContentAutonomous Mobile
Robots in Unknown
Outdoor Environments
Autonomous Mobile
Robots in Unknown
Outdoor Environments
Xiaorui Zhu, Youngshik Kim,
Mark Andrew Minor, and Chunxin Qiu
Cover photo courtesy of Dadao, Inc.
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-1-498-74055-5 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this
publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we
may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.
Library of Congress Cataloging-in-Publication Data
Names: Zhu, Xiaorui, author. | Kim, Youngshik, author. | Minor, Mark Andrew,
author. | Qiu, Chunxin, author.
Title: Autonomous mobile robots in unknown outdoor environments / Xiaorui
Zhu, Youngshik Kim, Mark Andrew Minor, Chunxin Qiu.
Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, 2017. |
Includes bibliographical references.
Identifiers: LCCN 2017037806 | ISBN 9781498740555 (hb : alk. paper)
Subjects: LCSH: Mobile robots. | Robots--Control systems.
Classification: LCC TJ211.415 .Z49 2017 | DDC 629.8/93--dc23
LC record available at https://lccn.loc.gov/2017037806
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
Contents
Authors ...............................................................................................................ix
SeCtion i intRoDUCtion
1 Introduction ...........................................................................................3
1.1 Outdoor Mobile Robots ....................................................................3
1.2 Overview of the Book ......................................................................11
SeCtion ii MeCHAniSM
2 Locomotion Mechanism .......................................................................15
2.1 Introduction ....................................................................................15
2.2 Compliant Design in Wheeled Mobile Robots ................................16
2.3 Compliant, Framed, Wheeled, Modular Mobile Robot ...................17
2.3.1 Mechanism .........................................................................17
2.3.2 General Kinematic Model ...................................................19
2.3.2.1 S teering Configurations .......................................20
2.3.2.2 F rame Coupling ...................................................22
2.3.2.3 G eneral Kinematics in Polar Coordinates ............25
2.3.3 Simplified Kinematic Models ..............................................28
2.3.4 Mobility and Maneuverability ............................................31
2.3.4.1 Limiting Factors ...................................................32
2.3.4.2 Performance Criteria ...........................................34
2.3.5 Generic Dynamic Model ....................................................37
SeCtion iii Motion ContRoL
3 Cooperative Motion Control and Sensing Architecture .......................43
3.1 Introduction ....................................................................................43
3.2 Motion Control and Sensing Strategy .............................................45
3.3 K inematic Motion Controller .........................................................46
v
vi ◾ Contents
3.4 Dynamic Motion Controller ...........................................................49
3.5 S ensory System ................................................................................50
4 Kinematic Motion Control ...................................................................53
4.1 I ntroduction ....................................................................................53
4.2 C ontrol of Unicycle-Type Robots ....................................................55
4.2.1 Kinematic Model ................................................................57
4.2.2 Path Manifold .....................................................................59
4.2.3 Control Law ........................................................................61
4.2.3.1 L yapunov-Based Control Design ..........................61
4.2.3.2 D ependence on Initial Conditions ......................70
4.2.3.3 Boundedness by Design of k and k ....................73
1 2
4.2.3.4 Dynamic Extension..............................................75
4.2.4 Controller Implementation and Evaluation .........................76
4.2.4.1 Methods and Procedures ......................................76
4.2.4.2 Results and Discussion .........................................78
4.3 Control of Multi-Axle Robots ........................................................90
4.3.1 Kinematic Model ................................................................92
4.3.2 Control Law ........................................................................95
4.3.2.1 Global Master Controller on Axle 1 .....................95
4.3.2.2 Slave Controllers on Axle i (i = 2,…,n) ..................96
4.3.3 Steering Algorithm .............................................................97
4.3.3.1 Basic Creeping-Like Steering Algorithm ..............97
4.3.3.2 Steering Algorithm for Posture Regulation ........105
4.3.4 Controller Evaluation ........................................................108
4.3.4.1 Methods and Procedures ....................................108
4.3.4.2 R esults and Discussion .......................................113
5 Sensory System ...................................................................................121
5.1 Introduction ..................................................................................121
5.2 The Relative Position Sensor ..........................................................125
5.2.1 Beam Model .....................................................................126
5.2.2 Implementation .................................................................128
5.3 First-Tier Data Fusion ....................................................................129
5.4 Second-Tier Data Fusion ...............................................................134
5.4.1 Motivation for Covariance Intersection.............................134
5.4.2 Relative Measurement Stochastic Posture Error
Correction (RMSPEC) .....................................................135
5.5 Static Testing of the RPS ...............................................................141
5.5.1 Methods and Procedures ...................................................141
5.5.2 Results and Discussion ......................................................143
5.6 Testing of the RPS and Data Fusion ..............................................147
Contents ◾ vii
5.6.1 Methods and Procedures ...................................................147
5.6.2 Results and Discussion ......................................................148
6 Robust Motion Control ......................................................................157
6.1 Introduction ..................................................................................157
6.2 Kinematic and Dynamic Models ...................................................159
6.2.1 Modular Dynamic Models................................................159
6.2.2 Modular Kinematic Models ..............................................160
6.2.3 Compliant Frame Model ...................................................162
6.3 Single Axle Nonlinear Damping Control Design ..........................164
6.3.1 Structural Transformation of Single-Axle Module ............164
6.3.2 Properties and Assumptions of Single-Axle Controller ......166
6.3.3 Nonlinear Damping Control Design of Single-Axle
Module .............................................................................167
6.3.4 Compliant Frame Effect on Control Design .....................169
6.4 Multi-Axle Distributed Control Design ........................................170
6.5 Controller Evaluation ....................................................................171
6.5.1 Methods and Procedures ...................................................171
6.5.2 Results ..............................................................................173
6.5.3 Discussion .........................................................................174
7 Overall Evaluation .............................................................................179
7.1 Introduction ..................................................................................179
7.2 Experiment Evaluation ..................................................................179
7.2.1 Methods and Procedures ...................................................179
7.2.2 Experimental Results and Discussion ................................180
SeCtion iV LoCALiZAtion AnD MAPPinG
8 Terrain-Inclination–Based Localization and Mapping ......................187
8.1 Introduction ..................................................................................187
8.2 Three-Dimensional Terrain-Inclination–Based Localization .........189
8.2.1 Robot Terrain-Inclination–Model Extraction ...................189
8.2.2 Particle-Filter Terrain-Inclination Localization .................191
8.3 Mapping ........................................................................................193
8.3.1 Data Acquisition and Point Clouds Separation .................193
8.3.1.1 Data Acquisition ................................................193
8.3.1.2 Point Clouds Separation .....................................194
8.3.2 ICP-Based Mapping ..........................................................196
8.4 Experimental Results and Discussion ............................................196
8.4.1 Methods and Procedures ...................................................196
8.4.2 Results and Discussion ......................................................198
viii ◾ Contents
9 Cloud-Based Localization Architecture in Large-Scale
Environments .....................................................................................205
9.1 Introduction ..................................................................................205
9.2 Cloud-Based Outsourcing Localization Architecture ...................208
9.2.1 Offline Phase ...................................................................208
9.2.2 Online Phase .....................................................................209
9.3 Cloud-Based Localization Algorithms ...........................................211
9.3.1 Algorithms in the Cloud ...................................................211
9.3.1.1 RTI Model .........................................................211
9.3.1.2 Image Matching .................................................211
9.3.2 Localization Algorithm on the Robot ...............................211
9.3.2.1 Particle-Filter-Based Localization .......................211
9.3.2.2 The Network Delay Compensation ....................214
9.4 Experiments and Discussions ........................................................216
9.4.1 Methods and Procedures ...................................................216
9.4.2 Results and Discussion ......................................................218
References ...................................................................................................231
Index ...........................................................................................................245
Authors
Xiaorui Zhu received BS and MS degrees from Harbin Institute of Technology,
Heilongjiang Sheng, China, in 1998 and 2000, respectively, and a PhD degree
from the University of Utah, Salt Lake City, Utah, in 2006, all in mechanical engi-
neering. She is currently a professor in the department of automation engineering
at Harbin Institute of Technology (Shenzhen), China, where she has been a faculty
member since 2007. She has also been the chief scientist and cofounder of sev-
eral high-tech companies, including DJI International, Inc., and RoboSense, Inc.,
Shenzhen, China. Her main research interests include mobile robots, unmanned
aerial vehicles, autonomous driving, and 3D modeling.
Youngshik Kim received a BS degree from Inha University, Incheon, South
Korea, in 1996, and MS and PhD degrees from the University of Utah, Salt Lake
City, Utah, in 2003 and 2008, respectively, all in mechanical engineering. He is
currently an associate professor in the department of mechanical engineering at
Hanbat National University, Daejeon, South Korea. His main research interests
include shape memory alloy actuators, bio-inspired robots, sensor fusion, motion
control, mobility, and manipulation of compliant robotic systems.
Mark Andrew Minor received a BS degree (1993) in mechanical engineering from
the University of Michigan, Ann Arbor, Michigan, and MS (1996) and PhD degrees
(2000) in mechanical engineering from Michigan State University, East Lansing,
Michigan. He is currently an associate professor with the department of mechanical
engineering, University of Utah, Salt Lake City, Utah, where he has been a faculty
member since 2000. He is also an adjunct associate professor of computing with the
School of Computing, University of Utah. His research interests include the design
and control of robotic systems with emphasis on mobile robots, automated ground
vehicles, aerial robots, rehabilitative systems, and virtual reality systems.
Chunxin Qiu received a BS degree from Yanshan University, Hebei, China, in
2007, and MS and PhD degrees from Harbin Institute of Technology (Shenzhen),
Heilongjiang Sheng, China, in 2010 and 2014, respectively, all in automation engi-
neering. He is currently the CEO of RoboSense, Inc., Shenzhen in China.
ix