ebook img

Autonomous Mobile Robots in Unknown Outdoor Environments PDF

266 Pages·2017·17.503 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Autonomous Mobile Robots in Unknown Outdoor Environments

Autonomous Mobile Robots in Unknown Outdoor Environments Autonomous Mobile Robots in Unknown Outdoor Environments Xiaorui Zhu, Youngshik Kim, Mark  Andrew  Minor, and Chunxin Qiu Cover photo courtesy of Dadao, Inc. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-498-74055-5 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Zhu, Xiaorui, author. | Kim, Youngshik, author. | Minor, Mark Andrew, author. | Qiu, Chunxin, author. Title: Autonomous mobile robots in unknown outdoor environments / Xiaorui Zhu, Youngshik Kim, Mark Andrew Minor, Chunxin Qiu. Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, 2017. | Includes bibliographical references. Identifiers: LCCN 2017037806 | ISBN 9781498740555 (hb : alk. paper) Subjects: LCSH: Mobile robots. | Robots--Control systems. Classification: LCC TJ211.415 .Z49 2017 | DDC 629.8/93--dc23 LC record available at https://lccn.loc.gov/2017037806 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Authors ...............................................................................................................ix SeCtion i intRoDUCtion 1 Introduction ...........................................................................................3 1.1 Outdoor Mobile Robots ....................................................................3 1.2 Overview of the Book ......................................................................11 SeCtion ii MeCHAniSM 2 Locomotion Mechanism .......................................................................15 2.1 Introduction ....................................................................................15 2.2 Compliant Design in Wheeled Mobile Robots ................................16 2.3 Compliant, Framed, Wheeled, Modular Mobile Robot ...................17 2.3.1 Mechanism .........................................................................17 2.3.2 General Kinematic Model ...................................................19 2.3.2.1 S teering Configurations .......................................20 2.3.2.2 F rame Coupling ...................................................22 2.3.2.3 G eneral Kinematics in Polar Coordinates ............25 2.3.3 Simplified Kinematic Models ..............................................28 2.3.4 Mobility and Maneuverability ............................................31 2.3.4.1 Limiting Factors ...................................................32 2.3.4.2 Performance Criteria ...........................................34 2.3.5 Generic Dynamic Model ....................................................37 SeCtion iii Motion ContRoL 3 Cooperative Motion Control and Sensing Architecture .......................43 3.1 Introduction ....................................................................................43 3.2 Motion Control and Sensing Strategy .............................................45 3.3 K inematic Motion Controller .........................................................46 v vi ◾ Contents 3.4 Dynamic Motion Controller ...........................................................49 3.5 S ensory System ................................................................................50 4 Kinematic Motion Control ...................................................................53 4.1 I ntroduction ....................................................................................53 4.2 C ontrol of Unicycle-Type Robots ....................................................55 4.2.1 Kinematic Model ................................................................57 4.2.2 Path Manifold .....................................................................59 4.2.3 Control Law ........................................................................61 4.2.3.1 L yapunov-Based Control Design ..........................61 4.2.3.2 D ependence on Initial Conditions ......................70 4.2.3.3 Boundedness by Design of k and k ....................73 1 2 4.2.3.4 Dynamic Extension..............................................75 4.2.4 Controller Implementation and Evaluation .........................76 4.2.4.1 Methods and Procedures ......................................76 4.2.4.2 Results and Discussion .........................................78 4.3 Control of Multi-Axle Robots ........................................................90 4.3.1 Kinematic Model ................................................................92 4.3.2 Control Law ........................................................................95 4.3.2.1 Global Master Controller on Axle 1 .....................95 4.3.2.2 Slave Controllers on Axle i (i = 2,…,n) ..................96 4.3.3 Steering Algorithm .............................................................97 4.3.3.1 Basic Creeping-Like Steering Algorithm ..............97 4.3.3.2 Steering Algorithm for Posture Regulation ........105 4.3.4 Controller Evaluation ........................................................108 4.3.4.1 Methods and Procedures ....................................108 4.3.4.2 R esults and Discussion .......................................113 5 Sensory System ...................................................................................121 5.1 Introduction ..................................................................................121 5.2 The Relative Position Sensor ..........................................................125 5.2.1 Beam Model .....................................................................126 5.2.2 Implementation .................................................................128 5.3 First-Tier Data Fusion ....................................................................129 5.4 Second-Tier Data Fusion ...............................................................134 5.4.1 Motivation for Covariance Intersection.............................134 5.4.2 Relative Measurement Stochastic Posture Error Correction (RMSPEC) .....................................................135 5.5 Static Testing of the RPS ...............................................................141 5.5.1 Methods and Procedures ...................................................141 5.5.2 Results and Discussion ......................................................143 5.6 Testing of the RPS and Data Fusion ..............................................147 Contents ◾ vii 5.6.1 Methods and Procedures ...................................................147 5.6.2 Results and Discussion ......................................................148 6 Robust Motion Control ......................................................................157 6.1 Introduction ..................................................................................157 6.2 Kinematic and Dynamic Models ...................................................159 6.2.1 Modular Dynamic Models................................................159 6.2.2 Modular Kinematic Models ..............................................160 6.2.3 Compliant Frame Model ...................................................162 6.3 Single Axle Nonlinear Damping Control Design ..........................164 6.3.1 Structural Transformation of Single-Axle Module ............164 6.3.2 Properties and Assumptions of Single-Axle Controller ......166 6.3.3 Nonlinear Damping Control Design of Single-Axle Module .............................................................................167 6.3.4 Compliant Frame Effect on Control Design .....................169 6.4 Multi-Axle Distributed Control Design ........................................170 6.5 Controller Evaluation ....................................................................171 6.5.1 Methods and Procedures ...................................................171 6.5.2 Results ..............................................................................173 6.5.3 Discussion .........................................................................174 7 Overall Evaluation .............................................................................179 7.1 Introduction ..................................................................................179 7.2 Experiment Evaluation ..................................................................179 7.2.1 Methods and Procedures ...................................................179 7.2.2 Experimental Results and Discussion ................................180 SeCtion iV LoCALiZAtion AnD MAPPinG 8 Terrain-Inclination–Based Localization and Mapping ......................187 8.1 Introduction ..................................................................................187 8.2 Three-Dimensional Terrain-Inclination–Based Localization .........189 8.2.1 Robot Terrain-Inclination–Model Extraction ...................189 8.2.2 Particle-Filter Terrain-Inclination Localization .................191 8.3 Mapping ........................................................................................193 8.3.1 Data Acquisition and Point Clouds Separation .................193 8.3.1.1 Data Acquisition ................................................193 8.3.1.2 Point Clouds Separation .....................................194 8.3.2 ICP-Based Mapping ..........................................................196 8.4 Experimental Results and Discussion ............................................196 8.4.1 Methods and Procedures ...................................................196 8.4.2 Results and Discussion ......................................................198 viii ◾ Contents 9 Cloud-Based Localization Architecture in Large-Scale Environments .....................................................................................205 9.1 Introduction ..................................................................................205 9.2 Cloud-Based Outsourcing Localization Architecture ...................208 9.2.1 Offline Phase ...................................................................208 9.2.2 Online Phase .....................................................................209 9.3 Cloud-Based Localization Algorithms ...........................................211 9.3.1 Algorithms in the Cloud ...................................................211 9.3.1.1 RTI Model .........................................................211 9.3.1.2 Image Matching .................................................211 9.3.2 Localization Algorithm on the Robot ...............................211 9.3.2.1 Particle-Filter-Based Localization .......................211 9.3.2.2 The Network Delay Compensation ....................214 9.4 Experiments and Discussions ........................................................216 9.4.1 Methods and Procedures ...................................................216 9.4.2 Results and Discussion ......................................................218 References ...................................................................................................231 Index ...........................................................................................................245 Authors Xiaorui Zhu received BS and MS degrees from Harbin Institute of Technology, Heilongjiang Sheng, China, in 1998 and 2000, respectively, and a PhD degree from the University of Utah, Salt Lake City, Utah, in 2006, all in mechanical engi- neering. She is currently a professor in the department of automation engineering at Harbin Institute of Technology (Shenzhen), China, where she has been a faculty member since 2007. She has also been the chief scientist and cofounder of sev- eral high-tech companies, including DJI International, Inc., and RoboSense, Inc., Shenzhen, China. Her main research interests include mobile robots, unmanned aerial vehicles, autonomous driving, and 3D modeling. Youngshik Kim received a BS degree from Inha University, Incheon, South Korea, in 1996, and MS and PhD degrees from the University of Utah, Salt Lake City, Utah, in 2003 and 2008, respectively, all in mechanical engineering. He is currently an associate professor in the department of mechanical engineering at Hanbat National University, Daejeon, South Korea. His main research interests include shape memory alloy actuators, bio-inspired robots, sensor fusion, motion control, mobility, and manipulation of compliant robotic systems. Mark Andrew Minor received a BS degree (1993) in mechanical engineering from the University of Michigan, Ann Arbor, Michigan, and MS (1996) and PhD degrees (2000) in mechanical engineering from Michigan State University, East Lansing, Michigan. He is currently an associate professor with the department of mechanical engineering, University of Utah, Salt Lake City, Utah, where he has been a faculty member since 2000. He is also an adjunct associate professor of computing with the School of Computing, University of Utah. His research interests include the design and control of robotic systems with emphasis on mobile robots, automated ground vehicles, aerial robots, rehabilitative systems, and virtual reality systems. Chunxin Qiu received a BS degree from Yanshan University, Hebei, China, in 2007, and MS and PhD degrees from Harbin Institute of Technology (Shenzhen), Heilongjiang Sheng, China, in 2010 and 2014, respectively, all in automation engi- neering. He is currently the CEO of RoboSense, Inc., Shenzhen in China. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.