Autonomous Airborne Refueling: Relative State Estimation by Anton Johan Runhaar Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Engineering at the Faculty of Engineering, Stellenbosch University Supervisor: DrI.K.Peddle DepartmentElectricalandElectronicEngineering December 2011 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent expli- citly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitteditforobtaininganyqualification. December2011 Copyright©2011StellenboschUniversity Allrightsreserved Stellenbosch University http://scholar.sun.ac.za Abstract This thesis presents the development of a state estimation system for use in an Autonomous AirborneRefueling(AAR)operationthroughthesimulatedimplementationofGPS,monocular and stereoscopic vision, inertial measurement sensors and boom parameter measurement in combinationwiththeExtendedKalmanFilter(EKF)andUnscentedKalmanFilter(UKF). A set of functional criteria for the estimation system was developed through an analysis of the control system input requirements and associated constraints. The estimation system is further developed by integrating the sensor configurations into the estimation algorithm structures through the derivation of the applicable mathematical models. Final sensor con- figurations are set based on a sensitivity analysis in which the effect of parameters such as sensor noise, placement and quantity are related to the accuracy with which the states are estimated. Uncertainty in the process noise, which is typically approximated, is overcome by adding an adaptiveelementtotheestimationalgorithmsinwhichthecurrentprocessnoiseisestimated allowingcompensationforunmodeledprocessnoiseuncertainty. Finally twelve practical sensor configurations are established utilising unique combinations of the five sensors. Each configuration is simulated using both estimation algorithms after which all results are evaluated with respect to one another as well as to the minimum state accuracy criteria. Conclusions are presented based on the evaluation of the results followed byrecommendationforfuturedevelopment. iii Stellenbosch University http://scholar.sun.ac.za Opsomming Dieontwikkelingvan’ntoestandafskattingstelsel,spesifiektoegepasopoutonomebrandstof- hervulling, word voorgelê in hierdie tesis. Hierdie ontwikkeling behels die implementering van GPS, monukulêre- en stereo-visie sensors, inersiële sensor eenhede en verbindingsarm- sensorswatgebruikwordin’nUitgebruideKalmanFilter(ExtendedKalmanFilter)enGeur- loseKalmanFilter(UnscentedKalmanFilter). ’nVolledigeontledingvandiebeheerstelselsetoevoervereistesengeassosieerdebeperkings is gebruik om ’n stel beoordelingsmaatstawwe vir die toestandafskatting-stelsel te bepaal. Die stelsel is verder ontwikkel deur verskillende sensorkonfigurasies met die afskattingsal- goritmes te kombineer deur die afleiding van toepaslike wiskundinge modelle. Hierdie kon- figurasiesisverfyndeur’nsensitiwiteitsanalise,waardieverwantskaptussendieeffektevan sensorruis, sensorligging, hoeveelheid sensors ondersoek is met betrekking tot afskatting- sakkuraatheid. Onsekerheid in die stelsel se prosesruis is deur ’n aanpassings substelsel hanteer, wat kom- pensasievirongemodeleerdeonsekerheidmoontlikmaak. Twaalfpraktiesesensorkonfiguras- ies is opgestel vanuit unieke kombinasies van die vyf sensore behartig in die projek. Hierdie konfigurasiesisdeurbeideafskattingsalgoritmesgebruikomsodoendedieakkuraatheidvan die konfigurasies asook die afskattingsalgoritmes te evalueer met betrekking tot mekaar en aandiehandvandiebeoordelingsmaatstawwevirdiebeheerstelsel. Dietesisisafgesluitdeur gevolgtrekkingsasookaanbevelingsvirtoekomstigenavorsing. iv Stellenbosch University http://scholar.sun.ac.za Contents Abstract iii Opsomming iv List of Figures ix List of Tables xi Nomenclature xiii Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv Referenceframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv RelevantShorthand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv VectorNotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv MathOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Acknowledgments xvi 1 Introduction 1 1.1 AirbusandAutonomousAirborneRefueling . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 ControlResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 EstimationResearch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 LiteratureStudy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 EstimationAlgorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 PracticalImplementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 ProposedApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Thesislayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 AAR State Estimation 13 v Stellenbosch University http://scholar.sun.ac.za CONTENTS vi 2.1 TheAARScenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 AircraftConfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Stagesofoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 TheControlSystemSpecifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 ControlEnvelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 ControlInputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Minimumcontrolinputaccuracy . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 StateEstimationSystemSpecifications . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 TheStateVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Stateestimateaccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 InertialMeasurementUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.2 RoamingBaseDifferentialGPS . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.3 Opticalsensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.3.1 Monocular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.3.2 Stereoscopic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.4 Boomparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 ProposedConfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.6 EstimationAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 State Estimation Algorithms 35 3.1 Thenon-linearsystemmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 ParticleFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 ExtendedKalmanFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4 UnscentedKalmanFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5 AlgorithmComparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.6 Processcovarianceadaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Process and Measurement Model Derivation 54 4.1 ProcessModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.1 AccelerometerandRateGyroscopeMeasurementModels . . . . . . . . . 55 4.1.1.1 Measuredvector,noiseandbias . . . . . . . . . . . . . . . . . . . 55 4.1.1.2 IMUoffsetfromaircraftCG . . . . . . . . . . . . . . . . . . . . . 57 4.1.1.3 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.2 RelativeAngularRateandAttitudeKinematics . . . . . . . . . . . . . . . 58 4.1.2.1 ErrorAttitudeRepresentations . . . . . . . . . . . . . . . . . . . 60 4.1.2.2 ModifiedRodriguesParameters . . . . . . . . . . . . . . . . . . . 61 Stellenbosch University http://scholar.sun.ac.za CONTENTS vii 4.1.2.3 ErrorMRPkinematicequation. . . . . . . . . . . . . . . . . . . . 63 4.1.3 RelativePositionandVelocityKinematics . . . . . . . . . . . . . . . . . . . 65 4.1.4 ProcessModelLinearisation . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 MeasurementModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.1 RoamingBaseDifferentialGPS . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.2 MonocularVision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.2.3 StereoscopicVision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.4 Boom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Sensitivity Analysis 78 5.1 ErrorCovarianceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2 ErrorCovariancePropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3 ErrorCovarianceCorrection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.1 RoamingBaseDGPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.2 Optical-Monocular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3.3 Optical-Stereoscopic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3.4 Boom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4 Non-rigidwingeffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.5 AdditionalMeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 Simulation and results 99 6.1 SimulationScenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2 SensorConfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3 Results-Configuration1(RoamingBase-DGPS) . . . . . . . . . . . . . . . . . . . 106 6.3.1 Stateestimateerrorandthe3σ errorbound . . . . . . . . . . . . . . . . . 107 6.3.2 PercentageControlEnvelope . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.3 ProcessCovarianceAdaptation . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3.4 EKFvs. UKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4 Results-AllConfigurationSummary . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.4.1 RelativePosition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.4.2 RelativeVelocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4.3 RelativeAttitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.4.4 Relativeangularrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.5 Percentageofcontrolenvelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.6 AdditionalSimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.6.1 ConfigurationImprovements . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Stellenbosch University http://scholar.sun.ac.za CONTENTS viii 7 Conclusions and Recommendations 127 A Vector Notation and Coordinate Frames 132 A.1 Referenceframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 A.1.1 Inertialreferenceframe,Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 A.1.2 LocalNEDreferenceframe,Fl . . . . . . . . . . . . . . . . . . . . . . . . . 133 A.1.3 EarthCenteredEarthfixedreferenceframe,Fe . . . . . . . . . . . . . . . 133 A.1.4 Body-fixedreferenceframe,Fb . . . . . . . . . . . . . . . . . . . . . . . . . 134 A.1.5 Body-carriedreferenceframe,Fc . . . . . . . . . . . . . . . . . . . . . . . 134 A.2 VectorNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 B Attitude Representations 138 B.1 Eulerangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 B.2 Quaternions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 C Stereoscopic Vision Measurement Transformation 142 D Simulation Configurations 144 D.1 Thetankerandreceiveraircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 D.2 Sensornoisecovariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 D.2.1 InertialMeasurementUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 D.3 RoamingBaseDifferentialGPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 D.3.1 Optical-MonocularandStereoscopic . . . . . . . . . . . . . . . . . . . . . 147 D.3.2 Boomparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 D.4 Errorcovariancepropagation-Chapater5 . . . . . . . . . . . . . . . . . . . . . . 148 D.5 Errorcovariancecorrection-Chapter5. . . . . . . . . . . . . . . . . . . . . . . . 149 D.6 FinalSimulation-Chapter6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Bibliography 152 Stellenbosch University http://scholar.sun.ac.za List of Figures 1.1 AARtankerandreceiveraircraftwithflyingboomrefuelingconfiguration . . . . . . 2 2.1 TankerConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 BoomJointConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 ReceiverConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 ControlEnvelopesasafunctionoftheallowableboomparameterdeflection . . . . 18 2.5 PositionControlInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 VelocityControlInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7 Estimationenvelopechosentobe10%ofthecontrolenvelope . . . . . . . . . . . . 21 2.8 Estimationenvelopeandtheresultsoftheupstreamerroranalysis . . . . . . . . . . 25 2.9 Estimation envelope and area of position control input uncertainty due to state es- timateuncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.10RoamingBaseDifferentialGPSasitappliedtotheAARscenario . . . . . . . . . . . 29 2.11IRBeaconarrayviewvs. filteredmeasurementpointarrayofopticalsensorCj . . . 30 2.12Estimationalgorithmflowadaptedfrom[1] . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 PropagationofParticleFilterparticlesthroughanon-linearfunction . . . . . . . . . 40 3.2 The propagation of the state mean and covariance based on function linearisation intheEKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 UnscentedKalmanFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 MeanandCovariancepropagationexample . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 Propagationofmeansandcovariancesinasimplified2Daircraftkinematicsexample50 4.1 RoamingBaseDifferentialGPSmeasurementvectors . . . . . . . . . . . . . . . . . 68 4.2 Monocularvisionmeasurementvectorandcoordinateprojection . . . . . . . . . . . 70 4.3 PinholeCameraModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4 Stereoscopic vision configuration with two measurements of a particular beacon, eachobtainedviatheidealpinholecameramodel . . . . . . . . . . . . . . . . . . . . 73 4.5 Stereoscopicvisionsubsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Measuredboomparametersandtherelativepositionvector . . . . . . . . . . . . . . 76 ix Stellenbosch University http://scholar.sun.ac.za LISTOFFIGURES x 5.1 Velocityerrorcovariancepropagation. . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Attitudeerrorcovariancepropagation . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3 Variation in the roaming GPS receiver position on the tanker fuselage from config- urationpositionsAtoB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4 ChangeinpositionandattitudeerrorcovarianceasafunctionofGPSsensorposition88 5.5 Change in velocity and angular velocity error covariance as a function of DGPS roamingreceiverposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.6 Variation in the IR beacon position on the tanker fuselage from configuration posi- tionsAtoB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.7 ChangeinpositionandattitudeerrorcovarianceasafunctionofIRbeaconposition 92 5.8 Fracional change in position and attitude error covariance a function of measure- mentquantity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.9 Change in velocity and angular velocity covariance as a function of GPS sensor position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1 True position of the tanker CG relative to the receiver CG coordinated in the re- ceiverreferenceframetobeestimated . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2 TruerelativevelocitybetweentankerandreceiverCGscoordinatedinthereceiver referenceframetobeestimated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3 AttitudeofthetankerrelativetothereceiverinEulerangles . . . . . . . . . . . . . 101 6.4 Angular rate of the tanker body axis relative to the receiver coordinated in the tankerreferenceframseastobeestimated . . . . . . . . . . . . . . . . . . . . . . . 102 6.5 TankervelocityinthelocalNEDreferenceframe . . . . . . . . . . . . . . . . . . . . 102 6.6 TankerattitudeinthelocalNEDreferenceframe . . . . . . . . . . . . . . . . . . . . 103 6.7 Tanker velocity and attitude in the local NED reference frame as well as angular ratesrelativetoinertialspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.8 Tanker aircraft with representation of the sensor layout applicable to the each of thesensorconfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.9 Receiver aircraft with representation of the sensor layout applicable to the each of thesensorconfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.10Relativepositionestimateerror,3σ boundandaverage3σ bound . . . . . . . . . . 107 6.11Relativevelocityestimateerror,3σ boundandaverage3σ bound . . . . . . . . . . . 108 6.12Relativeattitudeestimateerror,3σ boundandaverage3σ bound . . . . . . . . . . 109 6.13Relativeangularvelocityestimateerror,3σ boundandaverage3σ bound . . . . . . 109 6.14Averaged3σ errorvs. Minimumstateestimateaccuracylimits . . . . . . . . . . . . 110 6.15RoamingBaseDGPSpercentageofcontrolenvelope . . . . . . . . . . . . . . . . . . 111 6.16Processcovarianceadaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.17ComparisonbetweentheresultsobtainedfromtheEKFandUKF . . . . . . . . . . . 113
Description: