Series in BioEngineering Gaetano Valenza Enzo Pasquale Scilingo Autonomic Nervous System Dynamics for Mood and Emotional-State Recognition Signifi cant Advances in Data Acquisition, Signal Processing and Classifi cation Series in BioEngineering Forfurthervolumes: www.springer.com/series/10358 Gaetano Valenza (cid:2) Enzo Pasquale Scilingo Autonomic Nervous System Dynamics for Mood and Emotional-State Recognition Significant Advances in Data Acquisition, Signal Processing and Classification GaetanoValenza EnzoPasqualeScilingo BioengineeringandRoboticsResearch BioengineeringandRoboticsResearch Center“E.Piaggio” Center“E.Piaggio” UniversityofPisa UniversityofPisa Pisa,Italy Pisa,Italy ISSN2196-8861 ISSN2196-887X(electronic) SeriesinBioEngineering ISBN978-3-319-02638-1 ISBN978-3-319-02639-8(eBook) DOI10.1007/978-3-319-02639-8 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013951995 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Dedicatedtomybelovedparents, Francesco and Carmen G.V. Dedicatedtomyloves, Laura andEmma E.P.S. Foreword This book fervently presents a wide collection of methodological and applicative studies related to the assessment of autonomic nervous system (ANS) dynamics in healthy subjects and patients with mood disorders. Indeed, the high technical contentmakesthebookquiteattractivetoanyoneinterestedinmathematics,applied physics,electronics,statisticsand,mostespecially,insignalprocessing. Firstly,theauthorsamplyreviewanddiscusseveryaspectthatconcernsemotions andmoodrecognition,emphasizingexperimentalset-up,procedures,andinterpre- tationoftheresults,andallowingphysiciansandclinicalpsychologiststotakefull advantage of this monograph. Secondly, I am glad that the book emphasizes the probabilisticapproachbasedonpoint-processmodels,whichIhavebeenstudying in-depth during the last decade, in order to instantaneouslyassess ANS linear and nonlinear dynamics. Here the authors present a novel extension of the point pro- cessmathematicalframeworkascharacterizedthroughanalysisofheartbeatseries, thus providing a wide range of novel ANS markers that can be used for model- ing and classification. Remarkably, the book is also a unique contribution to the study of ANS nonlinear dynamics. Thirdly, although the emphasis of this work is on advanced signal processing techniques, it contains critical points regarding the developmentofwearablesystemsforANSmonitoring.Iliketheauthors’philoso- phy to “sensorize” everyday clothes such as gloves, t-shirts, and hats to make the recordingprocessasnon-invasive,effectiveandcomfortableaspossible. IknowtheauthorspersonallyandIdidnotexpectanythinglessfromthisbook. Ithinkthattheycanbeconfidentthattherewillbemanygratefulreaderswhowill havegainedabroaderperspectivehowthestudyofANSdynamicscanbeintegrated within the fields of biomedical engineering for affective computing and psycho- physiology. I do recommend the book for the active research scientists and PhD studentsinterestedinsuchinterdisciplinaryapproaches. HarvardMedicalSchool RiccardoBarbieri Boston,MA,USA August2013 vii Preface Thebookreportsonrecentadvancesinstudyingautonomicnervoussystem(ANS) dynamicsfortheassessmentofmoodandemotionalstates.Wewillillustrateseveral concepts,someofwhicharecurrentlysparseoverdifferentmanuscripts,inorderto bring out a clear breakthrough in the field of affective computing, mood assess- ment, biomedical engineering, biomedical signal processing, and data acquisition. The aim is to describe some personalized methodologies able to characterize the affectivestateofasubjectbymeansoftheanalysisofawidespectrumofperiph- eralbiosignalssuchasHeartRateVariability,ElectrodermalResponse,Respiration Activity,Eyegazeinformation. These methodologies will be presented with applications on actual data gath- eredfromhealthysubjectsaswellaspatientsaffectedbymooddisorders,although the reported advances can also be applied to several other (clinical) fields. Start- ingformapsychologicaldescriptionofhow-to-elicitanemotion(includingmodels ofemotions,affectivestimulietc.),conceptswillmovetotheneuro-physiologyof emotions, explaining the physiological bases of emotion recognition through non- invasive monitoring of the ANS. Afterwards, advanced methodologies of biomed- icalsignalprocessingwillbethoroughlydescribedpointingoutthecrucialroleof ANSnonlineardynamics.Then,thebookwillemphasizeaprobabilisticframework basedonpoint-processesabletoinstantaneouslyassesstheANScontrolonthelin- ear and the nonlinear cardiovascular dynamics. Concerning the signal acquisition, novelwearablemonitoringsystemswillbedescribedinfurthersectionsalongwith experimental procedures on healthy subjects and patients with bipolar disorders. The high technical content and all the proposed pioneering approaches make this monographoflargeinterest.Severalprofessionalssuchasbiomedicalengineersas well as physiologists, neuroscientists, etc. could benefit from the content of this book. Pisa,Italy GaetanoValenza August2013 EnzoPasqualeScilingo ix Acknowledgements Wewouldliketoacknowledgeallthepeoplewhocontributedtodataacquisitionand analysis. In particular, we would like to express our deepest and sincere gratitude toDr.AntonioLanatá,Dr.RiccardoBarbieri,Dr.LucaCiti,Dr.RitaParadiso,Dr. Paolo Allegrini, Prof. Danilo De Rossi, Dr. Claudio Gentili, and Prof. Dr. Gilles Bertschy. xi Contents PartI IntroductoryRemarksandStateoftheArt 1 IntroductiontoAdvancesinAutonomicNervousSystemDynamics forMoodandEmotional-StateRecognition . . . . . . . . . . . . . 3 2 EmotionsandMoodStates:Modeling,Elicitation,andClassification 9 2.1 ModelingEmotions . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 AutonomicNervousSystemCorrelatesofEmotions . . . . . . . 11 2.2.1 HeartRateVariability . . . . . . . . . . . . . . . . . . . 12 2.2.2 TheElectrodermalResponse . . . . . . . . . . . . . . . 12 2.2.3 InformationComingfromtheEyes:PupilSizeVariation andEyeTracking . . . . . . . . . . . . . . . . . . . . . 13 2.2.4 Cardio-RespiratoryCoupling . . . . . . . . . . . . . . . 15 2.3 EmotionElicitation . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 AffectiveComputing:FromTheorytoEmotionRecognition . . . 17 2.5 EmotionsandMoodDisorders:TheBipolarDisorders . . . . . . 17 2.6 AutonomicNervousSystemasaNonlinearPhysiologicalSystem 21 PartII Methodology 3 Data Acquisition: Experimental Procedures and Wearable MonitoringSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 ProceduresonHealthySubjects . . . . . . . . . . . . . . . . . . 25 3.1.1 RecruitmentofEligibleSubjects . . . . . . . . . . . . . 26 3.1.2 StimulusElicitation . . . . . . . . . . . . . . . . . . . . 26 3.2 ProceduresonBipolarPatients . . . . . . . . . . . . . . . . . . 28 3.2.1 RecruitmentofEligibleSubjectsandExperimental Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.2 TheMoodModel . . . . . . . . . . . . . . . . . . . . . 32 3.3 PortableandNovelWearableSystemsforAutonomicNervous SystemMonitoring . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 TheGloveSystem . . . . . . . . . . . . . . . . . . . . . 33 xiii xiv Contents 3.3.2 ThePSYCHESystem . . . . . . . . . . . . . . . . . . . 38 3.3.3 HATCAM—WearableEyeGazeTrackingSystem . . . . 39 3.3.4 BIOPAC:SetofPhysiologicalSignalsandInstrumentation 43 4 AdvancedSignalProcessingandModelingforANSData . . . . . . 45 4.1 OverallMethodology . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.1 MovementArtifactRemoval . . . . . . . . . . . . . . . 48 4.2.2 ElectrocardiogramandHeartRateVariability. . . . . . . 48 4.2.3 Respiration . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.4 ElectrodermalResponse . . . . . . . . . . . . . . . . . . 50 4.3 FeatureSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1 StandardFeatureSet . . . . . . . . . . . . . . . . . . . . 52 4.3.2 FeaturesfromHigherOrderSpectra. . . . . . . . . . . . 54 4.3.3 PupillometryandGazePoint . . . . . . . . . . . . . . . 57 4.3.4 NonlinearMethodsforFeatureExtraction . . . . . . . . 63 4.3.5 Cardio-RespiratorySynchronizationAnalysis . . . . . . 68 4.4 FeatureReductionStrategy . . . . . . . . . . . . . . . . . . . . 70 4.4.1 PrincipalComponentAnalysis . . . . . . . . . . . . . . 70 4.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5.1 QuadraticDiscriminantClassifier . . . . . . . . . . . . . 71 4.5.2 k-NearestNeighborhood. . . . . . . . . . . . . . . . . . 73 4.5.3 Multi-layerPerceptron . . . . . . . . . . . . . . . . . . . 73 4.5.4 SupportVectorMachine . . . . . . . . . . . . . . . . . . 73 4.6 Point-ProcessTheoryandtheInstantaneousNonlinearDynamics 74 4.6.1 Point-ProcessNonlinearModeloftheHeartbeat . . . . . 77 4.6.2 EstimationoftheInput–OutputVolterraKernels . . . . . 79 4.6.3 QuantitativeTools:HighOrderSpectralAnalysis . . . . 80 PartIII Results 5 ExperimentalEvidencesonHealthySubjectsandBipolarPatients 85 5.1 ResultsfromtheHealthySubjectsStudy . . . . . . . . . . . . . 86 5.1.1 EffectiveArousalandValenceLevelsRecognition ThroughAutonomicNervousSystemDynamics . . . . . 86 5.1.2 ApproximateEntropyandDominantLyapunovExponent AnalysisonHeartRateVariability . . . . . . . . . . . . 88 5.1.3 Cardio-RespiratorySynchronizationAnalysis . . . . . . 90 5.1.4 UsingCardio-RespiratorySynchronizationInformation forEmotionRecognition . . . . . . . . . . . . . . . . . 92 5.1.5 InstantaneousBispectralCharacterization oftheAutonomicNervousSystemThrough Point-ProcessNonlinearModels . . . . . . . . . . . . . 94 5.1.6 InstantaneousEmotionalAssessmentThroughNonlinear Point-ProcessModels . . . . . . . . . . . . . . . . . . . 95 5.1.7 ElectrodermalResponseAnalysisandSensorizedGlove Assessment . . . . . . . . . . . . . . . . . . . . . . . . 99
Description: