ebook img

Automotive Chassis Engineering PDF

337 Pages·2018·13.82 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automotive Chassis Engineering

David C. Barton John D. Fieldhouse Automotive Chassis Engineering Automotive Chassis Engineering David C. Barton John D. Fieldhouse (cid:129) Automotive Chassis Engineering 123 DavidC. Barton JohnD.Fieldhouse Schoolof MechanicalEngineering Schoolof MechanicalEngineering University of Leeds University of Leeds Leeds Leeds UK UK ISBN978-3-319-72436-2 ISBN978-3-319-72437-9 (eBook) https://doi.org/10.1007/978-3-319-72437-9 LibraryofCongressControlNumber:2018931474 ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface A common concern of the automotive industry is that new recruits/graduates are more than able to operate the modern computer-aided design packages but are not fully aware or knowledgeable about the basic theory within the programmes. Because of that lack of basic understanding, they are unable to develop the com- mercial package(s) to suit the company’s needs nor readily appreciate the output values.Evenmoreimportant,astimeprogressesandthatbasicknowledgebecomes rarer within companies, the reliance on commercial software suppliers increases, alongwithcosts.Thereisacontinuingneedforcompaniestobecomeself-sufficient and be in a position to develop bespoke design ‘tools’ specific to their needs. The advances in electric vehicle technology and move towards autonomous drivingmakeitnecessaryfortheengineertocontinuallyupgradetheirfundamental understanding and interrelationship of vehicle systems. The engineers in their formativeyearsoftrainingneedtobeinapositiontocontributetothedevelopment ofnewsystemsandindeedrealisenewones.Tomakeacontributionitisnecessary to, again, understand the technology and fundamental understanding of vehicle systems. This textbook is written for students and practicing engineers working or interestedinautomotiveengineering.Itprovidesafundamentalyetcomprehensive understandingofchassissystemsandpresumeslittlepriorknowledgebythereader beyond that normally presented in Bachelor level courses in mechanical or auto- motive engineering. The book presents the material in a practical and realistic manner, often using reverse engineering as a basis for examples to reinforce understanding of the topics. Existing vehicle specifications and characteristics are used to exemplify the application of theory. Each chapter starts with a review of basic theory and practice before proceeding to consider more advanced topics and research directions. Care is taken to ensure each subject area integrates with other sections of the book to clearly demonstrate their interrelationships. The book opens with a chapter on basic vehicle mechanics which indicates the forces acting on a vehicle in motion, assuming the vehicle to be a rigid body. Althoughthismaterialwillbefamiliartomanyreaders,itisanecessaryprerequisite tothemorespecialistmaterialthatfollows.Thebookthenproceedstoachapteron v vi Preface steering systems which includes a firm understanding of the principles and forces involved under both static and dynamic loading. The next chapter provides an appreciationofvehicledynamicsthroughtheconsiderationofsuspensionsystems— tyres, linkages, springs, dampers, etc. The chassis structures and materials chapter includes analysis tools (typically FEA) and design features that are used on modern vehiclestoreducemassandtoincreaseoccupantsafety.ThefinalchapteronNoise, VibrationandHarshness(NVH)includesabasicoverviewofacousticandvibration theory and makes use of extensive research investigations and test procedures as a means to alleviate NVH issues. In all subject areas, the authors take account of modern trends, anticipating the movetowardselectricvehicles,on-boarddiagnosticmonitoring,activesystemsand performance optimisation. The book contains a number of worked examples and case studies based on recent research projects. All students, especially those on MastersleveldegreecoursesinAutomotiveEngineering,aswellasprofessionalsin industrywhowanttogainabetterunderstandingofvehiclechassisengineeringwill benefit from this book. Leeds, UK David C. Barton John D. Fieldhouse Acknowledgements TheoriginsofthisbooklieinacourseofthesamenamedeliveredtoMasterslevel Automotive and Mechanical Engineering students at the University of Leeds for a number of years. The authors are grateful to those who have contributed to the design and development of the course, especially the late Professor David Crolla, Professor David Towers, Dr. Brian Hall and Dr. Peter Brooks, as well as to previous research students who have developed some of the case study material. vii Contents 1 Vehicle Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Modelling Philosophy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Co-ordinate Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Tractive Force and Tractive Resistance . . . . . . . . . . . . . . . . . . . 3 1.3.1 Tractive Force or Tractive Effort (TE). . . . . . . . . . . . . . 3 1.3.2 Tractive Resistances (TR). . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3 Effect of TR and TE on Vehicle Performance . . . . . . . . 12 1.4 Tyre Properties and Performance. . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.1 Tyre Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.2 Tyre Designation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.3 The Friction Circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.4 Limiting Frictional Force Available. . . . . . . . . . . . . . . . 19 1.5 Rigid Body Load Transfer Effects for Straight Line Motion . . . . 21 1.5.1 Vehicle Stationary or Moving at Constant Velocity on Sloping Ground. . . . . . . . . . . . . . . . . . . . . 21 1.5.2 Vehicle Accelerating/Decelerating on Level Ground. . . . 22 1.5.3 Rear Wheel, Front Wheel and Four Wheel Drive Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.4 Caravans and Trailers. . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.6 Rigid Body Load Transfer Effects During Cornering . . . . . . . . . 35 1.6.1 Steady State Cornering. . . . . . . . . . . . . . . . . . . . . . . . . 37 1.6.2 Non-steady State Cornering . . . . . . . . . . . . . . . . . . . . . 38 1.7 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2 Steering Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1 General Aims and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2 Steering Requirements/Regulations . . . . . . . . . . . . . . . . . . . . . . 46 2.2.1 General Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.2 Steering Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.3 Steering Behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ix x Contents 2.3 Steering Geometry and Kinematics . . . . . . . . . . . . . . . . . . . . . . 49 2.3.1 Basic Design Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3.2 Ideal Ackermann Steering Geometry . . . . . . . . . . . . . . . 51 2.4 Review of Common Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4.1 Manual Steering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4.2 Rack and Pinion System. . . . . . . . . . . . . . . . . . . . . . . . 54 2.4.3 Steering Box Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4.4 Hydraulic Power Assisted Steering (HPAS). . . . . . . . . . 58 2.4.5 Electric Power Assisted Steering (EPAS). . . . . . . . . . . . 60 2.4.6 Steer-by-Wire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.5 Steering “Errors” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.5.1 Tyre Slip and Tyre Slip Angle . . . . . . . . . . . . . . . . . . . 66 2.5.2 Compliance Steer—Elastokinematics. . . . . . . . . . . . . . . 68 2.5.3 Steering Geometry Errors . . . . . . . . . . . . . . . . . . . . . . . 72 2.6 Important Geometric Parameters in Determining Steering Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.6.1 Front Wheel Geometry. . . . . . . . . . . . . . . . . . . . . . . . . 73 2.6.2 Kingpin Inclination Angle (Lateral Inclination Angle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.6.3 Castor Inclination Angle (Mechanical Castor) . . . . . . . . 75 2.7 Forces Associated with Steering a Stationary Vehicle . . . . . . . . . 77 2.7.1 Tyre Scrub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.7.2 Jacking of the Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.7.3 Forces at the Steering Wheel . . . . . . . . . . . . . . . . . . . . 83 2.8 Forces Associated with Steering a Moving Vehicle. . . . . . . . . . . 91 2.8.1 Normal Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 2.8.2 Lateral Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2.8.3 Longitudinal Force—Tractive Effort (Front Wheel Drive) or Braking . . . . . . . . . . . . . . . . . . 100 2.8.4 Rolling Resistance and Overturning Moments . . . . . . . . 101 2.9 Four Wheel Steering (4WS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2.10 Developments in Steering Assistance—Active Torque Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.10.1 Active Yaw Damping. . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.10.2 Active Torque Input. . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.11 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3 Suspension Systems and Components. . . . . . . . . . . . . . . . . . . . . . . . 111 3.1 Introduction to Suspension Design. . . . . . . . . . . . . . . . . . . . . . . 111 3.1.1 The Role of a Vehicle Suspension. . . . . . . . . . . . . . . . . 112 3.1.2 Definitions and Terminology. . . . . . . . . . . . . . . . . . . . . 113 3.1.3 What Is a Vehicle Suspension?. . . . . . . . . . . . . . . . . . . 113 3.1.4 Suspension Classifications . . . . . . . . . . . . . . . . . . . . . . 114 Contents xi 3.1.5 Defining Wheel Position. . . . . . . . . . . . . . . . . . . . . . . . 115 3.1.6 Tyre Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.2 Selection of Vehicle Suspensions. . . . . . . . . . . . . . . . . . . . . . . . 122 3.2.1 Factors Influencing Suspension Selection. . . . . . . . . . . . 123 3.3 Kinematic Requirements for Dependent and Independent Suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.3.1 Examples of Dependent Suspensions. . . . . . . . . . . . . . . 125 3.3.2 Examples of Independent Front Suspensions . . . . . . . . . 128 3.3.3 Examples of Independent Rear Suspensions. . . . . . . . . . 130 3.3.4 Examples of Semi-independent Rear Suspensions . . . . . 132 3.4 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 3.4.1 Spring Types and Characteristics. . . . . . . . . . . . . . . . . . 135 3.4.2 Anti-roll Bars (Roll Stabilisers). . . . . . . . . . . . . . . . . . . 143 3.5 Dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 3.5.1 Damper Types and Characteristics. . . . . . . . . . . . . . . . . 151 3.5.2 Active Dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 3.6 Kinematic Analysis of Suspensions . . . . . . . . . . . . . . . . . . . . . . 157 3.7 Roll Centres and Roll Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 3.7.1 Roll Centre Determination . . . . . . . . . . . . . . . . . . . . . . 163 3.7.2 Roll Centre Migration . . . . . . . . . . . . . . . . . . . . . . . . . 166 3.8 Lateral Load Transfer Due to Cornering. . . . . . . . . . . . . . . . . . . 168 3.8.1 Load Transfer Due to Roll Moment . . . . . . . . . . . . . . . 170 3.8.2 Load Transfer Due to Sprung Mass Inertia Force. . . . . . 171 3.8.3 Load Transfer Due to Unsprung Mass Inertia Forces . . . 171 3.8.4 Total Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 3.8.5 Roll Angle Gradient (Roll Rate) . . . . . . . . . . . . . . . . . . 172 3.9 Spring Rate and Wheel Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 3.9.1 Wheel Rate Required for Constant Natural Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 3.9.2 The Relationship Between Spring Rate and Wheel Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 178 3.10 Analysis of Forces in Suspension Members . . . . . . . . . . . . . . . . 180 3.10.1 Longitudinal Loads Due to Braking and Accelerating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 3.10.2 Vertical Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 3.10.3 Lateral, Longitudinal and Mixed Loads . . . . . . . . . . . . . 186 3.10.4 Limit or Bump Stops . . . . . . . . . . . . . . . . . . . . . . . . . . 188 3.10.5 Modelling Transient Loads . . . . . . . . . . . . . . . . . . . . . . 190 3.11 Suspension Geometry to Combat Squat and Dive. . . . . . . . . . . . 190 3.11.1 Anti-dive Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 3.11.2 Anti-squat Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 195 3.12 Vehicle Ride Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.