ebook img

Automorphisms and Equivalence Relations in Topological Dynamics PDF

287 Pages·2014·1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automorphisms and Equivalence Relations in Topological Dynamics

(cid:2) (cid:2) “9781107633223AR” — 2013/12/10 — 22:14 — page i — #1 (cid:2) (cid:2) LONDONMATHEMATICALSOCIETYLECTURENOTESERIES ManagingEditor: ProfessorM.Reid,MathematicsInstitute,UniversityofWarwick,CoventryCV47AL,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,orfromCambridgeUniversityPressat http://www.cambridge.org/mathematics 287 TopicsonRiemannsurfacesandFuchsiangroups,E.BUJALANCE,A.F.COSTA&E.MARTÍNEZ(eds) 288 Surveysincombinatorics,2001,J.W.P.HIRSCHFELD(ed) 289 AspectsofSobolev-typeinequalities,L.SALOFF-COSTE 290 QuantumgroupsandLietheory,A.PRESSLEY(ed) 291 Titsbuildingsandthemodeltheoryofgroups,K.TENT(ed) 292 Aquantumgroupsprimer,S.MAJID 293 SecondorderpartialdifferentialequationsinHilbertspaces,G.DAPRATO&J.ZABCZYK 294 Introductiontooperatorspacetheory,G.PISIER 295 Geometryandintegrability,L.MASON&Y.NUTKU(eds) 296 Lecturesoninvarianttheory,I.DOLGACHEV 297 Thehomotopycategoryofsimplyconnected4-manifolds,H.-J.BAUES 298 Higheroperads,highercategories,T.LEINSTER(ed) 299 Kleiniangroupsandhyperbolic3-manifolds,Y.KOMORI,V.MARKOVIC&C.SERIES(eds) 300 IntroductiontoMöbiusdifferentialgeometry,U.HERTRICH-JEROMIN 301 StablemodulesandtheD(2)-problem,F.E.A.JOHNSON 302 DiscreteandcontinuousnonlinearSchrödingersystems,M.J.ABLOWITZ,B.PRINARI&A.D.TRUBATCH 303 Numbertheoryandalgebraicgeometry,M.REID&A.SKOROBOGATOV(eds) 304 GroupsStAndrews2001inOxfordI,C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 305 GroupsStAndrews2001inOxfordII,C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 306 Geometricmechanicsandsymmetry,J.MONTALDI&T.RATIU(eds) 307 Surveysincombinatorics2003,C.D.WENSLEY(ed.) 308 Topology,geometryandquantumfieldtheory,U.L.TILLMANN(ed) 309 Coringsandcomodules,T.BRZEZINSKI&R.WISBAUER 310 Topicsindynamicsandergodictheory,S.BEZUGLYI&S.KOLYADA(eds) 311 Groups:topological,combinatorialandarithmeticaspects,T.W.MÜLLER(ed) 312 Foundationsofcomputationalmathematics,Minneapolis2002,F.CUCKERetal.(eds) 313 Transcendentalaspectsofalgebraiccycles,S.MÜLLER-STACH&C.PETERS(eds) 314 Spectralgeneralizationsoflinegraphs,D.CVETKOVIC,P.ROWLINSON&S.SIMIC 315 Structuredringspectra,A.BAKER&B.RICHTER(eds) 316 Linearlogicincomputerscience,T.EHRHARD,P.RUET,J.-Y.GIRARD&P.SCOTT(eds) 317 Advancesinellipticcurvecryptography,I.F.BLAKE,G.SEROUSSI&N.P.SMART(eds) 318 Perturbationoftheboundaryinboundary-valueproblemsofpartialdifferentialequations,D.HENRY 319 DoubleaffineHeckealgebras,I.CHEREDNIK 320 L-functionsandGaloisrepresentations,D.BURNS,K.BUZZARD&J.NEKOVÁR(eds) 321 Surveysinmodernmathematics,V.PRASOLOV&Y.ILYASHENKO(eds) 322 Recentperspectivesinrandommatrixtheoryandnumbertheory,F.MEZZADRI&N.C.SNAITH(eds) 323 Poissongeometry,deformationquantisationandgrouprepresentations,S.GUTTetal(eds) 324 Singularitiesandcomputeralgebra,C.LOSSEN&G.PFISTER(eds) 325 LecturesontheRicciflow,P.TOPPING 326 ModularrepresentationsoffinitegroupsofLietype,J.E.HUMPHREYS 327 Surveysincombinatorics2005,B.S.WEBB(ed) 328 Fundamentalsofhyperbolicmanifolds,R.CANARY,D.EPSTEIN&A.MARDEN(eds) 329 SpacesofKleiniangroups,Y.MINSKY,M.SAKUMA&C.SERIES(eds) 330 Noncommutativelocalizationinalgebraandtopology,A.RANICKI(ed) 331 Foundationsofcomputationalmathematics,Santander2005,L.MPARDO,A.PINKUS,E.SÜLI&M.J.TODD(eds) 332 Handbookoftiltingtheory,L.ANGELERIHÜGEL,D.HAPPEL&H.KRAUSE(eds) 333 Syntheticdifferentialgeometry(2ndEdition),A.KOCK 334 TheNavier–Stokesequations,N.RILEY&P.DRAZIN 335 Lecturesonthecombinatoricsoffreeprobability,A.NICA&R.SPEICHER 336 Integralclosureofideals,rings,andmodules,I.SWANSON&C.HUNEKE 337 MethodsinBanachspacetheory,J.M.F.CASTILLO&W.B.JOHNSON(eds) 338 Surveysingeometryandnumbertheory,N.YOUNG(ed) 339 GroupsStAndrews2005I,C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 340 GroupsStAndrews2005II,C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 341 Ranksofellipticcurvesandrandommatrixtheory,J.B.CONREY,D.W.FARMER,F.MEZZADRI&N.C.SNAITH(eds) 342 Ellipticcohomology,H.R.MILLER&D.C.RAVENEL(eds) 343 AlgebraiccyclesandmotivesI,J.NAGEL&C.PETERS(eds) 344 AlgebraiccyclesandmotivesII,J.NAGEL&C.PETERS(eds) 345 Algebraicandanalyticgeometry,A.NEEMAN 346 Surveysincombinatorics2007,A.HILTON&J.TALBOT(eds) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “9781107633223AR” — 2013/12/10 — 22:14 — page ii — #2 (cid:2) (cid:2) 347 Surveysincontemporarymathematics,N.YOUNG&Y.CHOI(eds) 348 Transcendentaldynamicsandcomplexanalysis,P.J.RIPPON&G.M.STALLARD(eds) 349 ModeltheorywithapplicationstoalgebraandanalysisI,Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY&A.WILKIE(eds) 350 ModeltheorywithapplicationstoalgebraandanalysisII,Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY&A.WILKIE(eds) 351 FinitevonNeumannalgebrasandmasas,A.M.SINCLAIR&R.R.SMITH 352 Numbertheoryandpolynomials,J.MCKEE&C.SMYTH(eds) 353 Trendsinstochasticanalysis,J.BLATH,P.MÖRTERS&M.SCHEUTZOW(eds) 354 Groupsandanalysis,K.TENT(ed) 355 Non-equilibriumstatisticalmechanicsandturbulence,J.CARDY,G.FALKOVICH&K.GAWEDZKI 356 EllipticcurvesandbigGaloisrepresentations,D.DELBOURGO 357 Algebraictheoryofdifferentialequations,M.A.H.MACCALLUM&A.V.MIKHAILOV(eds) 358 Geometricandcohomologicalmethodsingrouptheory,M.R.BRIDSON,P.H.KROPHOLLER&I.J.LEARY(eds) 359 Modulispacesandvectorbundles,L.BRAMBILA-PAZ,S.B.BRADLOW,O.GARCÍA-PRADA&S.RAMANAN(eds) 360 Zariskigeometries,B.ZILBER 361 Words:Notesonverbalwidthingroups,D.SEGAL 362 Differentialtensoralgebrasandtheirmodulecategories,R.BAUTISTA,L.SALMERÓN&R.ZUAZUA 363 Foundationsofcomputationalmathematics,HongKong2008,F.CUCKER,A.PINKUS&M.J.TODD(eds) 364 Partialdifferentialequationsandfluidmechanics,J.C.ROBINSON&J.L.RODRIGO(eds) 365 Surveysincombinatorics2009,S.HUCZYNSKA,J.D.MITCHELL&C.M.RONEY-DOUGAL(eds) 366 Highlyoscillatoryproblems,B.ENGQUIST,A.FOKAS,E.HAIRER&A.ISERLES(eds) 367 Randommatrices:Highdimensionalphenomena,G.BLOWER 368 GeometryofRiemannsurfaces,F.P.GARDINER,G.GONZÁLEZ-DIEZ&C.KOUROUNIOTIS(eds) 369 Epidemicsandrumoursincomplexnetworks,M.DRAIEF&L.MASSOULIÉ 370 Theoryofp-adicdistributions,S.ALBEVERIO,A.YU.KHRENNIKOV&V.M.SHELKOVICH 371 Conformalfractals,F.PRZYTYCKI&M.URBANSKI 372 Moonshine:Thefirstquartercenturyandbeyond,J.LEPOWSKY,J.MCKAY&M.P.TUITE(eds) 373 Smoothness,regularityandcompleteintersection,J.MAJADAS&A.G.RODICIO 374 Geometricanalysisofhyperbolicdifferentialequations:Anintroduction,S.ALINHAC 375 Triangulatedcategories,T.HOLM,P.JØRGENSEN&R.ROUQUIER(eds) 376 Permutationpatterns,S.LINTON,N.RUŠKUC&V.VATTER(eds) 377 AnintroductiontoGaloiscohomologyanditsapplications,G.BERHUY 378 Probabilityandmathematicalgenetics,N.H.BINGHAM&C.M.GOLDIE(eds) 379 Finiteandalgorithmicmodeltheory,J.ESPARZA,C.MICHAUX&C.STEINHORN(eds) 380 Realandcomplexsingularities,M.MANOEL,M.C.ROMEROFUSTER&C.T.CWALL(eds) 381 Symmetriesandintegrabilityofdifferenceequations,D.LEVI,P.OLVER,Z.THOMOVA&P.WINTERNITZ(eds) 382 Forcingwithrandomvariablesandproofcomplexity,J.KRAJÍCEK 383 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryI,R.CLUCKERS,J.NICAISE&J.SEBAG (eds) 384 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryII,R.CLUCKERS,J.NICAISE&J. SEBAG(eds) 385 EntropyofhiddenMarkovprocessesandconnectionstodynamicalsystems,B.MARCUS,K.PETERSEN&T.WEISSMAN(eds) 386 Independence-friendlylogic,A.L.MANN,G.SANDU&M.SEVENSTER 387 GroupsStAndrews2009inBathI,C.M.CAMPBELLetal.(eds) 388 GroupsStAndrews2009inBathII,C.M.CAMPBELLetal.(eds) 389 Randomfieldsonthesphere,D.MARINUCCI&G.PECCATI 390 Localizationinperiodicpotentials,D.E.PELINOVSKY 391 Fusionsystemsinalgebraandtopology,M.ASCHBACHER,R.KESSAR&B.OLIVER 392 Surveysincombinatorics2011,R.CHAPMAN(ed) 393 Non-abelianfundamentalgroupsandIwasawatheory,J.COATESetal.(eds) 394 Variationalroblemsindifferentialgeometry,R.BIELAWSKI,K.HOUSTON&M.SPEIGHT(eds) 395 Howgroupsgrow,A.MANN 396 Arithmeticdfferentialoperatorsoverthep-adicIntegers,C.C.RALPH&S.R.SIMANCA 397 HyperbolicgeometryandapplicationsinquantumChaosandcosmology,J.BOLTE&F.STEINER(eds) 398 Mathematicalmodelsincontactmechanics,M.SOFONEA&A.MATEI 399 Circuitdoublecoverofgraphs,C.-Q.ZHANG 400 Densespherepackings:ablueprintforformalproofs,T.HALES 401 AdoubleHallalgebraapproachtoaffinequantumSchur–Weyltheory,B.DENG,J.DU&Q.FU 402 Mathematicalaspectsoffluidmechanics,J.ROBINSON,J.L.RODRIGO&W.SADOWSKI(eds) 403 Foundationsofcomputationalmathematics:Budapest2011,F.CUCKER,T.KRICK,A.SZANTO&A.PINKUS(eds) 404 Operatormethodsforboundaryvalueproblems,S.HASSI,H.S.V.DESNOO&F.H.SZAFRANIEC(eds) 405 Torsors,étalehomotopyandapplicationstorationalpoints,A.N.SKOROBOGATOV(ed) 406 Appalachiansettheory,J.CUMMINGS&E.SCHIMMERLING(eds) 407 Themaximalsubgroupsofthelow-dimensionalfiniteclassicalgroups,J.N.BRAY,D.F.HOLT&C.M.RONEY-DOUGAL 408 Complexityscience:theWarwickmaster’scourse,R.BALL,R.S.MACKAY&V.KOLOKOLTSOV(eds) 409 Surveysincombinatorics2013,S.BLACKBURN,S.GERKE&M.WILDON(eds) 410 Representationtheoryandharmonicanalysisofwreathproductsoffinitegroups,T.CECCHERINISILBERSTEIN,F.SCARABOTTI &F.TOLLI 411 ModuliSpaces,L.BRAMBILA-PAZ,O.GARCIA-PRADA,P.NEWSTEAD&R.THOMAS(eds) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “9781107633223AR” — 2013/12/10 — 22:14 — page iii — #3 (cid:2) (cid:2) LondonMathematicalSocietyLectureNoteSeries:412 Automorphisms and Equivalence Relations in Topological Dynamics DAVID B. ELLIS BeloitCollege,Wisconsin ROBERT ELLIS UniversityofMinnesota (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “9781107633223AR” — 2013/12/10 — 22:14 — page iv — #4 (cid:2) (cid:2) UniversityPrintingHouse,Cambridgecb28bs,UnitedKingdom PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitofeducation, learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107633223 ©D.B.EllisandR.Ellis Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdomby<NameofPrinter> AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-Publicationdata Ellis,D.(David),1958–Automorphismsandequivalencerelationsintopologicaldynamics /DavidB.Ellis,BeloitCollege,Wisconsin,RobertEllis,UniversityofMinnesota. pages cm.–(LondonMathematicalSocietylecturenoteseries;412) ISBN978-1-107-63322-3(pbk.) 1. Topologicaldynamics. 2. Algebraictopology. 3. Automorphisms. I. Ellis,Robert,1926– II. Title. QA611.5.E3942014 512’.55–dc23 2013043992 ISBN978-1-107-63323-3Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “9781107633223AR” — 2013/12/10 — 22:14 — page v — #5 (cid:2) (cid:2) To Valerie, Carrie, and Kathleen; in memory of Betty. (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “9781107633223AR” — 2013/12/10 — 22:14 — page vi — #6 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “9781107633223AR” — 2013/12/10 — 22:14 — page vii — #7 (cid:2) (cid:2) Contents Introduction pageix PARTI UNIVERSALCONSTRUCTIONS 1 1 TheStone-cechcompactificationβT 3 2 Flowsandtheirenvelopingsemigroups 19 3 Minimalsetsandminimalrightideals 27 4 Fundamentalnotions 37 5 Quasi-factorsandthecircleoperator 54 PARTII EQUIVALENCERELATIONSAND AUTOMORPHISMSOFFLOWS 65 6 Quotientspacesandrelativeproducts 67 7 IcersonMandautomorphismsofM 83 8 Regularflows 103 9 Thequasi-relativeproduct 111 PARTIII THEτ-TOPOLOGY 125 10 Theτ-topologyonAut(X) 127 11 Thederivedgroup 138 12 Quasi-factorsandtheτ-topology 149 vii (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “9781107633223AR” — 2013/12/10 — 22:14 — page viii — #8 (cid:2) (cid:2) viii Contents PARTIV SUBGROUPSOFGANDTHEDYNAMICS OFMINIMALFLOWS 155 13 TheproximalrelationandthegroupP 157 14 DistalflowsandthegroupD 167 15 EquicontinuousflowsandthegroupE 179 16 Theregionallyproximalrelation 205 PARTV EXTENSIONSOFMINIMALFLOWS 211 17 Openandhighlyproximalextensions 213 18 Distalextensionsofminimalflows 231 19 Almostperiodicextensionsofminimalflows 245 20 Ataleoffourtheorems 260 References 267 Index 269 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) “9781107633223AR” — 2013/12/10 — 22:14 — page ix — #9 (cid:2) (cid:2) Introduction To a large extent this book is an updated version of Lectures on Topological Dynamics by Robert Ellis [Ellis,R ., (1969)]. That book gave an exposition of what might be called an algebraic theory of minimal sets. Our goal here is to give a clear, self contained exposition of a new approach to the theory whichallowsformorestraightforwardproofsanddevelopsaclearerlanguage for expressing many of the fundamental ideas. We have included a treatment of many of the results in the aforementioned exposition, in addition to more recent developments in the theory; we have not attempted, however, to give a complete or exhaustive treatment of all the known results in the algebraic theoryofminimalsets.Ourhopeisthatthereaderwillbemotivatedtousethe languageandtechniquestostudyrelatedtopicsnottouchedonhere.Someof thesearementionedeitherintheexercisesornotesgivenattheendofvarious sections. This book should be suitable for a graduate course in topological dynamicswhoseprerequisitesneedonlyincludesomebackgroundintoplogy. WeassumethereaderisfamiliarwithcompactHausdorffspaces,convergence of nets, etc., and perhaps has had some exposure to uniform structures and pseudometricswhichplayalimitedroleinourexposition. A flow is a triple (X,T,π) where X is a compact Hausdorff space, T is a topological group, and π : X ×T → X is a continuous action of T on X, so that xe = x and (xt)s = x(ts) for all x ∈ X, s,t ∈ T. Here we write xt = π(x,t) for all x ∈ X and t ∈ T, and e is the identity of the group T. Usually the symbol π will be omitted and the flow (X,T,π) denoted by (X,T) or simply by X. In the situations considered here there is no loss of generalityifT isgiventhediscretetopology.Theassumptionsmadethusfar donotsufficetoproduceaninterestingtheory.ThegroupT maybetoo“small” in its action on X. Thus for example, the trivial case where xt = x , a fixed 0 element of X, for all x ∈ X and t ∈ T, is not ruled out. To eliminate such degenerate behavior it is convenient to assume that the flow (X,T) is point ix (cid:2) (cid:2) (cid:2) (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.