ebook img

Automatic sequences: theory, applications, generalizations PDF

587 Pages·2003·2.896 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automatic sequences: theory, applications, generalizations

AUTOMATIC SEQUENCES Unitingdozensofdisparateresultsfromdifferentfields,thisbookcombinescon- ceptsfrommathematicsandcomputersciencetopresentthefirstintegratedtreat- mentofsequencesgeneratedbythesimplemodelofcomputationcalledthefinite automaton. Theauthorsdevelopthetheoryofautomaticsequencesandtheirgeneralizations, suchasSturmianwordsandk-regularsequences.Further,theydiscussapplications to number theory (particularly formal power series and transcendence in finite characteristic),physics,computergraphics,andmusic. Results are presented from first principles wherever feasible, and the book is supplemented by a collection of 460 exercises, 85 open problems, and over 1600 citations to the literature. Thus this book is suitable for graduate students or ad- vanced undergraduates, as well as for mature researchers wishing to know more aboutthisfascinatingsubject. Jean-PaulAlloucheisDirecteurdeRechercheatCNRS,LRI,Orsay.Hehaswritten some90papersinnumbertheoryandcombinatoricsonwords.Heisontheeditorial boardofAdvancesinAppliedMathematicsandonthescientificcommitteeofthe JournaldeThe´oriedesNombresdeBordeaux. JeffreyShallitisProfessorofComputerScienceattheUniversityofWaterloo.He haswritten80articlesonnumbertheory,algorithms,formallanguages,combina- toricsonwords,computergraphics,historyofmathematics,algebraandautomata theory. He is the editor-in-chief of the Journal of Integer Sequences and coauthor ofAlgorithmicNumberTheory. AUTOMATIC SEQUENCES Theory, Applications, Generalizations JEAN-PAUL ALLOUCHE CNRS,LSI,Orsay JEFFREY SHALLIT UniversityofWaterloo    Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge  , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521823326 © Jean-Paul Allouche & Jeffrey Shallit 2003 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2003 -  isbn-13 978-0-511-06208-7 eBook (NetLibrary) -  isbn-10 0-511-06208-7 eBook (NetLibrary) -  isbn-13 978-0-521-82332-6 hardback -  isbn-10 0-521-82332-3 hardback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Nousde´dionscelivrea` MichelMende`sFrance ensignedegratitudeetd’amitie´ Contents Preface pagexiii 1 Stringology 1 1.1 Words 1 1.2 TopologyandMeasure 5 1.3 LanguagesandRegularExpressions 7 1.4 Morphisms 8 1.5 TheTheoremsofLyndonandSchu¨tzenberger 10 1.6 RepetitionsinWords 14 1.7 Overlap-FreeBinaryWords 16 1.8 AdditionalTopicsonRepetitions 23 1.9 Exercises 24 1.10 OpenProblems 30 1.11 NotesonChapter1 31 2 NumberTheoryandAlgebra 39 2.1 DivisibilityandValuations 39 2.2 RationalandIrrationalNumbers 39 2.3 AlgebraicandTranscendentalNumbers 41 2.4 ContinuedFractions 44 2.5 BasicsofDiophantineApproximation 48 2.6 TheThree-DistanceTheorem 53 2.7 AlgebraicStructures 55 2.8 VectorSpaces 56 2.9 Fields 56 2.10 Polynomials,RationalFunctions,andFormalPowerSeries 58 2.11 p-adicNumbers 62 2.12 AsymptoticNotation 63 2.13 SomeUsefulEstimates 63 2.14 Exercises 64 2.15 OpenProblems 67 2.16 NotesonChapter2 67 vii viii Contents 3 NumerationSystems 70 3.1 NumerationSystems 70 3.2 SumsofDigits 74 3.3 BlockCountingandDigitalSequences 77 3.4 RepresentationofRealNumbers 84 3.5 SumsofSumsofDigits 86 3.6 Base-k RepresentationwithAlternateDigitSets 101 3.7 RepresentationsinNegativeBases 103 3.8 FibonacciRepresentation 105 3.9 Ostrowski’sα-NumerationSystem 106 3.10 RepresentationsinComplexBases 107 3.11 Exercises 112 3.12 OpenProblems 118 3.13 NotesonChapter3 119 4 FiniteAutomataandOtherModelsofComputation 128 4.1 FiniteAutomata 128 4.2 ProvingLanguagesNonregular 136 4.3 FiniteAutomatawithOutput 137 4.4 Context-FreeGrammarsandLanguages 143 4.5 Context-SensitiveGrammarsandLanguages 146 4.6 TuringMachines 146 4.7 Exercises 148 4.8 OpenProblems 150 4.9 NotesonChapter4 150 5 AutomaticSequences 152 5.1 AutomaticSequences 152 5.2 RobustnessoftheAutomaticSequenceConcept 157 5.3 Two-SidedAutomaticSequences 161 5.4 BasicPropertiesofAutomaticSequences 165 5.5 NonautomaticSequences 166 5.6 k-AutomaticSets 168 5.7 1-AutomaticSequences 169 5.8 Exercises 170 5.9 OpenProblems 171 5.10 NotesonChapter5 171 6 UniformMorphismsandAutomaticSequences 173 6.1 FixedPointsofUniformMorphisms 173 6.2 TheThue–MorseInfiniteWord 173 6.3 Cobham’sTheorem 174 6.4 TheTowerofHanoiandIteratedMorphisms 177 6.5 PaperfoldingandContinuedFractions 181 6.6 Thek-Kernel 185 Contents ix 6.7 Cobham’sTheoremfor(k,l)-NumerationSystems 187 6.8 BasicClosureProperties 189 6.9 UniformTransductionofAutomaticSequences 192 6.10 SumsofDigits,Polynomials,andAutomaticSequences 197 6.11 Exercises 201 6.12 OpenProblems 207 6.13 NotesonChapter6 208 7 MorphicSequences 212 7.1 TheInfiniteFibonacciWord 212 7.2 FiniteFixedPoints 213 7.3 MorphicSequencesandInfiniteFixedPoints 215 7.4 Two-SidedInfiniteFixedPoints 218 7.5 MoreonInfiniteFixedPoints 226 7.6 ClosureProperties 228 7.7 MorphicImagesofMorphicWords 231 7.8 LocallyCatenativeSequences 237 7.9 TransductionsofMorphicSequences 240 7.10 Exercises 242 7.11 OpenProblems 244 7.12 NotesonChapter7 245 8 FrequencyofLetters 247 8.1 SomeExamples 247 8.2 TheIncidenceMatrixAssociatedwithaMorphism 248 8.3 SomeResultsonNon-negativeMatrices 249 8.4 FrequenciesofLettersandWordsinaMorphicSequence 266 8.5 AnApplication 276 8.6 Gaps 278 8.7 Exercises 280 8.8 OpenProblems 282 8.9 Notes 282 9 CharacteristicWords 283 9.1 DefinitionsandBasicProperties 283 9.2 GeometricInterpretationofCharacteristicWords 290 9.3 Application:UnusualContinuedFractions 291 9.4 Exercises 293 9.5 OpenProblems 295 9.6 NotesonChapter9 295 10 Subwords 298 10.1 Introduction 298 10.2 BasicPropertiesofSubwordComplexity 300 10.3 ResultsforAutomaticSequences 304 10.4 SubwordComplexityforMorphicWords 306 x Contents 10.5 SturmianWords 312 10.6 SturmianWordsandkth-Power-Freeness 320 10.7 SubwordComplexityofFiniteWords 323 10.8 Recurrence 324 10.9 UniformRecurrence 328 10.10 Appearance 333 10.11 Exercises 334 10.12 OpenProblems 340 10.13 NotesonChapter10 340 11 Cobham’sTheorem 345 11.1 SyndeticandRightDenseSets 345 11.2 ProofofCobham’sTheorem 347 11.3 Exercises 350 11.4 NotesonChapter11 350 12 FormalPowerSeries 351 12.1 Examples 352 12.2 Christol’sTheorem 354 12.3 FirstApplicationtoTranscendenceResults 359 12.4 FormalLaurentPowerSeriesandCarlitzFunctions 359 12.5 TranscendenceofValuesoftheCarlitz–GossGammaFunction 362 12.6 ApplicationtoTranscendenceProofsoverQ(X) 365 12.7 Furstenberg’sTheorem 367 12.8 Exercises 371 12.9 OpenProblems 375 12.10 NotesonChapter12 376 13 AutomaticRealNumbers 379 13.1 BasicPropertiesoftheAutomaticReals 379 13.2 Non-closurePropertiesof L(k,b) 382 13.3 Transcendence:AnAdHocApproach 385 13.4 TranscendenceoftheThue–MorseNumber 387 13.5 TranscendenceofMorphicRealNumbers 391 13.6 TranscendenceofCharacteristicRealNumbers 393 13.7 TheThue–MorseContinuedFraction 394 13.8 Exercises 400 13.9 OpenProblems 402 13.10 NotesonChapter13 403 14 MultidimensionalAutomaticSequences 405 14.1 TheSierpin´skiCarpet 405 14.2 FormalDefinitionsandBasicResults 408 14.3 SubwordComplexity 412 14.4 FormalPowerSeries 413 14.5 AutomaticSequencesinBase−1+i 414

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.