Table Of ContentAutomated Diagnostics and
Analytics for Buildings
Automated Diagnostics and
Analytics for Buildings
Editors
Barney L Capehart PhD, CEM
and
Michael R Brambley, PhD
Library of Congress Cataloging-in-Publication Data
Capehart, Barney L.
Automated Diagnostics and Analytics for Buildings/ Barney Capehart.
pages cm
Includes bibliographical references and index.
ISBN 0-88173-732-1 (alk. paper) -- ISBN 0-88173-733-X (electronic) -- ISBN 978-1-4987-0611-7
(Taylor & Francis distribution : alk. paper)
Library of Congress Control Number: 2014946700
Automated Diagnostics and Analytics for Buildings by Barney Capehart and Michael R. Brambley
©2015 by The Fairmont Press, Inc. All rights reserved. No part of this publication may be repro-
duced or transmitted in any form or by any means, electronic or mechanical, including photocopy,
recording, or any information storage and retrieval system, without permission in writing from
the publisher.
Published by The Fairmont Press, Inc.
700 Indian Trail
Lilburn, GA 30047
tel: 770-925-9388; fax: 770-381-9865
http://www.fairmontpress.com
Distributed by Taylor & Francis Ltd.
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487, USA
E-mail: orders@crcpress.com
Distributed by Taylor & Francis Ltd.
23-25 Blades Court
Deodar Road
London SW15 2NU, UK
E-mail: uk.tandf@thomsonpublishingservices.co.uk
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
ISBN 0-88173-732-1 (The Fairmont Press, Inc.)
ISBN 978-1-4987-0611-7 (Taylor & Francis Ltd.)
While every effort is made to provide dependable information, the publisher, authors, and editors
cannot be held responsible for any errors or omissions.
The views expressed herein do not necessarily reflect those of the publisher.
Contents
SECTION I
The Case for Automated Tools for Facility Management and Operation
Chapter 1
Introduction 3
The Energy and Sustainability Connections . . . . . . . . . . . . . . . . . . . . . . . . 3
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 2
Energy-Smart Buildings Demonstrating How Information
Technology Can Cut Energy Use and Costs of Real Estate Portfolios 9
Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Introduction: The Case for Smart Buildings . . . . . . . . . . . . . . . . . . . . . . . 10
Case study—Smart Buildings at Microsoft . . . . . . . . . . . . . . . . . . . . . . . . 13
Future smart Building Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Chapter 3
Perspective on Building Analytics Adoption 23
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Building Energy Analytics Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Building Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
People Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 4
Delivering Successful Results from Automated Diagnostics Solutions 29
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Skill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Quality of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Current State or Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Delivery Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Chapter 5
Intelligent Efficiency: Opportunities, Barriers, and Solutions 35
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Intelligent Efficiency Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A “Systems Approach” to Energy Savings . . . . . . . . . . . . . . . . . . . . . . . . 38
v
Eliminating the Degradation of Energy Savings . . . . . . . . . . . . . . . . . . . . 39
Energy Savings from Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Non-Energy Benefits: Safety, Quality, Job Creation . . . . . . . . . . . . . . . . . . . 43
Harvesting the Potential of Building Automation Systems . . . . . . . . . . . . . . 44
Smart Manufacturing and Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . 48
Energy Measures Considered in the Economic Analysis . . . . . . . . . . . . . . . . 49
Distinguishing Intelligent Efficiency Measures . . . . . . . . . . . . . . . . . . . . . 50
Intelligent Energy Measures Included in the Economic Analysis . . . . . . . . . . . 51
Intelligent Efficiency Measures for the Commercial Sector . . . . . . . . . . . . . . 51
Accounting for Interactions Between Energy Measures in the
Commercial Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Intelligent Efficiency Measures for the Industrial Sector . . . . . . . . . . . . . . . . 55
Plant Automation and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Industrial Building Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Results: Cumulative Potential Energy Savings from Intelligent Efficiency . . . . . . 57
The Challenges of Big Data and Data Analytics . . . . . . . . . . . . . . . . . . . . . 58
A Common Interconnection to Communicate Energy Data . . . . . . . . . . . . . . 60
Common Protocols for Determining Energy Savings . . . . . . . . . . . . . . . . . . 61
Utility Sector Efficiency Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Challenges Facing Efficiency Programs . . . . . . . . . . . . . . . . . . . . . . . . . 63
Including Automation and Controls in Efficiency Programs . . . . . . . . . . . . . 64
Challenges of Incorporating Automation and Controls into Efficiency Programs . . 64
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
SECTION II
Current Technology, Tools, Products, Services, and Applications
Chapter 6
Automated Diagnostics 75
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Don’t Generate False Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Focus on Problems the Customer Cares About . . . . . . . . . . . . . . . . . . . . . 77
Use Hierarchical Fault Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Present Information, Not Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Advanced Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Chapter 7
Enabling Efficient Building Energy Management through
Automated Fault Detection and Diagnostics 83
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Harvesting Data and the Importance of Reliable Data Storage . . . . . . . . . . . . 83
Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Asset Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Operational Guidelines™ and the Low-Hanging Fruit . . . . . . . . . . . . . . . . . 85
Automated Fault Detection and Diagnostics . . . . . . . . . . . . . . . . . . . . . . 86
Chapter Summary/Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
About Ezenics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
vi
Chapter 8
A Practical, Proven Approach to Energy Intelligence,
Measurement, and Management 101
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Automated Diagnostics as a Component of Energy Intelligence Software . . . . . .102
Case Study: The Power of Efficiency-SMART Insight’s
Meter-Level Analytics at Beacon Capital . . . . . . . . . . . . . . . . . . . . . .102
Case Study: Mining Operational Savings from Building Management
Systems with EfficiencySMART at Western Connecticut State University . . .105
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Chapter 9
Di-BOSS: Research, Development & Deployment of the World’s First
Digital Building Operating System 109
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
The Origin of Di-BOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
The Di-BOSS Building Operating System Solution . . . . . . . . . . . . . . . . . . . 113
Di-BOSS Tenant Cockpit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
TPO, the Brain of Di-BOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Real-Time Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Preheat, Startup, and Ramp-down Recommendations . . . . . . . . . . . . . . . . . 118
Convergence to the Operational Optimal . . . . . . . . . . . . . . . . . . . . . . . .120
Now-Cast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
Chapter 10
Analytics, Alarms, Analysis, Fault Detection and Diagnostics 127
Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
FDD—Fault Detection & Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Some Examples Help to Highlight the Distinctions . . . . . . . . . . . . . . . . . . .130
Data Access—A Key Requirement for all Data-oriented Tools . . . . . . . . . . . . .132
Analytics as an Exploratory Process . . . . . . . . . . . . . . . . . . . . . . . . . . .132
A Fast Moving Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
Chapter 11
Using Custom Programs to Enhance Building Diagnostics and Energy Savings 137
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
The Facility Time Schedule Program . . . . . . . . . . . . . . . . . . . . . . . . . . .137
The Building Tune-Up System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
The Carrier Alarm Notification Program . . . . . . . . . . . . . . . . . . . . . . . . .139
Ems Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
Chapter 12
88 Acres—How Microsoft Quietly Built the City of the Future 149
The Visionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
88 Acres in a One-Stoplight Town . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
The Living, Breathing Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
vii
Enough Data to Change the World . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
A Smarter Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
Chapter 13
Improving Airport Energy Efficiency through Continuous Commissioning®
Process Implementation at Dallas/Fort Worth International Airport 155
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
The Continuous Commissioning® Process . . . . . . . . . . . . . . . . . . . . . . . .156
The CC Process at DFW International Airport Facilities . . . . . . . . . . . . . . . .157
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Chapter 14
ECAM+ A Tool for Analyzing Building Data to Improve and
Track Performance 163
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
Credits for ECAM+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
ECAM+ Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
ECAM+ Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Chart Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Measurement and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
Chapter 15
Outside The Box: Integrating People & Controls
To Create a Unique Energy Management Program—A Caltech Case Study 175
The Business Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
Optimal Performance Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176
The Human Element of Automated Diagnostics . . . . . . . . . . . . . . . . . . . .177
Transition to Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
AEM from the Solutions Provider’s Perspective . . . . . . . . . . . . . . . . . . . .178
Next Steps for the AEM Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
Chapter 16
Value Proposition of FDD Solutions 179
Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
Introduction—Why FDD and Why Now? . . . . . . . . . . . . . . . . . . . . . . . .179
Analysis—Leveraging Value from FDD approach . . . . . . . . . . . . . . . . . . .180
First, Use What You Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
Solutions—Finding the Right Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Chapter 17
FDD: How High Are the Market Barriers to Entry? 187
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
Fault Detection and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
Who . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188
What . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189
When . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189
viii
Where . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
Why . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
How . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
Chapter 18
Diagnostics for Monitoring-based Commissioning 193
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
SECTION III
Methodology and Future Technology
Chapter 19
Model-based Real-time Whole Building Energy Performance
Monitoring and Diagnostics 205
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
System Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
Conclusions and Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Chapter 20
Advanced Methods for Whole Building Energy Analysis 227
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
Calculation and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
Calculation and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234
Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234
Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234
Calculation and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234
Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
Identifying Abnormal Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
Chapter 21
Identification of Energy Efficiency Opportunities Through Building Data
Analysis and Achieving Energy Savings through Improved Controls 241
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
Analyzing Interval Meter Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
Analyzing Building Automation
System Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
Conclusions/Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269
ix