Automated Diagnostics and Analytics for Buildings Automated Diagnostics and Analytics for Buildings Editors Barney L Capehart PhD, CEM and Michael R Brambley, PhD Library of Congress Cataloging-in-Publication Data Capehart, Barney L. Automated Diagnostics and Analytics for Buildings/ Barney Capehart. pages cm Includes bibliographical references and index. ISBN 0-88173-732-1 (alk. paper) -- ISBN 0-88173-733-X (electronic) -- ISBN 978-1-4987-0611-7 (Taylor & Francis distribution : alk. paper) Library of Congress Control Number: 2014946700 Automated Diagnostics and Analytics for Buildings by Barney Capehart and Michael R. Brambley ©2015 by The Fairmont Press, Inc. All rights reserved. No part of this publication may be repro- duced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Published by The Fairmont Press, Inc. 700 Indian Trail Lilburn, GA 30047 tel: 770-925-9388; fax: 770-381-9865 http://www.fairmontpress.com Distributed by Taylor & Francis Ltd. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487, USA E-mail: [email protected] Distributed by Taylor & Francis Ltd. 23-25 Blades Court Deodar Road London SW15 2NU, UK E-mail: [email protected] Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 ISBN 0-88173-732-1 (The Fairmont Press, Inc.) ISBN 978-1-4987-0611-7 (Taylor & Francis Ltd.) While every effort is made to provide dependable information, the publisher, authors, and editors cannot be held responsible for any errors or omissions. The views expressed herein do not necessarily reflect those of the publisher. Contents SECTION I The Case for Automated Tools for Facility Management and Operation Chapter 1 Introduction 3 The Energy and Sustainability Connections . . . . . . . . . . . . . . . . . . . . . . . . 3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Energy-Smart Buildings Demonstrating How Information Technology Can Cut Energy Use and Costs of Real Estate Portfolios 9 Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Introduction: The Case for Smart Buildings . . . . . . . . . . . . . . . . . . . . . . . 10 Case study—Smart Buildings at Microsoft . . . . . . . . . . . . . . . . . . . . . . . . 13 Future smart Building Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 3 Perspective on Building Analytics Adoption 23 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Building Energy Analytics Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Building Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 People Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 4 Delivering Successful Results from Automated Diagnostics Solutions 29 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Skill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Quality of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Current State or Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Delivery Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter 5 Intelligent Efficiency: Opportunities, Barriers, and Solutions 35 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Intelligent Efficiency Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 A “Systems Approach” to Energy Savings . . . . . . . . . . . . . . . . . . . . . . . . 38 v Eliminating the Degradation of Energy Savings . . . . . . . . . . . . . . . . . . . . 39 Energy Savings from Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Non-Energy Benefits: Safety, Quality, Job Creation . . . . . . . . . . . . . . . . . . . 43 Harvesting the Potential of Building Automation Systems . . . . . . . . . . . . . . 44 Smart Manufacturing and Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . 48 Energy Measures Considered in the Economic Analysis . . . . . . . . . . . . . . . . 49 Distinguishing Intelligent Efficiency Measures . . . . . . . . . . . . . . . . . . . . . 50 Intelligent Energy Measures Included in the Economic Analysis . . . . . . . . . . . 51 Intelligent Efficiency Measures for the Commercial Sector . . . . . . . . . . . . . . 51 Accounting for Interactions Between Energy Measures in the Commercial Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Intelligent Efficiency Measures for the Industrial Sector . . . . . . . . . . . . . . . . 55 Plant Automation and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Industrial Building Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Results: Cumulative Potential Energy Savings from Intelligent Efficiency . . . . . . 57 The Challenges of Big Data and Data Analytics . . . . . . . . . . . . . . . . . . . . . 58 A Common Interconnection to Communicate Energy Data . . . . . . . . . . . . . . 60 Common Protocols for Determining Energy Savings . . . . . . . . . . . . . . . . . . 61 Utility Sector Efficiency Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Challenges Facing Efficiency Programs . . . . . . . . . . . . . . . . . . . . . . . . . 63 Including Automation and Controls in Efficiency Programs . . . . . . . . . . . . . 64 Challenges of Incorporating Automation and Controls into Efficiency Programs . . 64 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 SECTION II Current Technology, Tools, Products, Services, and Applications Chapter 6 Automated Diagnostics 75 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Don’t Generate False Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Focus on Problems the Customer Cares About . . . . . . . . . . . . . . . . . . . . . 77 Use Hierarchical Fault Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Present Information, Not Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Advanced Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter 7 Enabling Efficient Building Energy Management through Automated Fault Detection and Diagnostics 83 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Harvesting Data and the Importance of Reliable Data Storage . . . . . . . . . . . . 83 Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Asset Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Operational Guidelines™ and the Low-Hanging Fruit . . . . . . . . . . . . . . . . . 85 Automated Fault Detection and Diagnostics . . . . . . . . . . . . . . . . . . . . . . 86 Chapter Summary/Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 About Ezenics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 vi Chapter 8 A Practical, Proven Approach to Energy Intelligence, Measurement, and Management 101 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Automated Diagnostics as a Component of Energy Intelligence Software . . . . . .102 Case Study: The Power of Efficiency-SMART Insight’s Meter-Level Analytics at Beacon Capital . . . . . . . . . . . . . . . . . . . . . .102 Case Study: Mining Operational Savings from Building Management Systems with EfficiencySMART at Western Connecticut State University . . .105 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 Chapter 9 Di-BOSS: Research, Development & Deployment of the World’s First Digital Building Operating System 109 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 The Origin of Di-BOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 The Di-BOSS Building Operating System Solution . . . . . . . . . . . . . . . . . . . 113 Di-BOSS Tenant Cockpit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 TPO, the Brain of Di-BOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Real-Time Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Preheat, Startup, and Ramp-down Recommendations . . . . . . . . . . . . . . . . . 118 Convergence to the Operational Optimal . . . . . . . . . . . . . . . . . . . . . . . .120 Now-Cast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Chapter 10 Analytics, Alarms, Analysis, Fault Detection and Diagnostics 127 Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 FDD—Fault Detection & Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 Some Examples Help to Highlight the Distinctions . . . . . . . . . . . . . . . . . . .130 Data Access—A Key Requirement for all Data-oriented Tools . . . . . . . . . . . . .132 Analytics as an Exploratory Process . . . . . . . . . . . . . . . . . . . . . . . . . . .132 A Fast Moving Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 Chapter 11 Using Custom Programs to Enhance Building Diagnostics and Energy Savings 137 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 The Facility Time Schedule Program . . . . . . . . . . . . . . . . . . . . . . . . . . .137 The Building Tune-Up System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 The Carrier Alarm Notification Program . . . . . . . . . . . . . . . . . . . . . . . . .139 Ems Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 Chapter 12 88 Acres—How Microsoft Quietly Built the City of the Future 149 The Visionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 88 Acres in a One-Stoplight Town . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 The Living, Breathing Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 vii Enough Data to Change the World . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 A Smarter Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 Chapter 13 Improving Airport Energy Efficiency through Continuous Commissioning® Process Implementation at Dallas/Fort Worth International Airport 155 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 The Continuous Commissioning® Process . . . . . . . . . . . . . . . . . . . . . . . .156 The CC Process at DFW International Airport Facilities . . . . . . . . . . . . . . . .157 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Chapter 14 ECAM+ A Tool for Analyzing Building Data to Improve and Track Performance 163 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 Credits for ECAM+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 ECAM+ Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 ECAM+ Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 Chart Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 Measurement and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 Chapter 15 Outside The Box: Integrating People & Controls To Create a Unique Energy Management Program—A Caltech Case Study 175 The Business Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 Optimal Performance Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 The Human Element of Automated Diagnostics . . . . . . . . . . . . . . . . . . . .177 Transition to Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 AEM from the Solutions Provider’s Perspective . . . . . . . . . . . . . . . . . . . .178 Next Steps for the AEM Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 Chapter 16 Value Proposition of FDD Solutions 179 Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 Introduction—Why FDD and Why Now? . . . . . . . . . . . . . . . . . . . . . . . .179 Analysis—Leveraging Value from FDD approach . . . . . . . . . . . . . . . . . . .180 First, Use What You Have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 Solutions—Finding the Right Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 Chapter 17 FDD: How High Are the Market Barriers to Entry? 187 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Fault Detection and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Who . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 What . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 When . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 viii Where . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 Why . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 How . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 Chapter 18 Diagnostics for Monitoring-based Commissioning 193 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 SECTION III Methodology and Future Technology Chapter 19 Model-based Real-time Whole Building Energy Performance Monitoring and Diagnostics 205 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 System Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212 Conclusions and Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 Chapter 20 Advanced Methods for Whole Building Energy Analysis 227 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 Calculation and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 Calculation and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 Calculation and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238 Identifying Abnormal Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . .238 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 Chapter 21 Identification of Energy Efficiency Opportunities Through Building Data Analysis and Achieving Energy Savings through Improved Controls 241 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 Analyzing Interval Meter Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 Analyzing Building Automation System Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 Conclusions/Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269 ix