ebook img

Atomic Structure Prediction of Nanostructures, Clusters and Surfaces PDF

199 Pages·2013·4.682 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Atomic Structure Prediction of Nanostructures, Clusters and Surfaces

CristianV.Ciobanu, Cai-ZhuangWang, andKai-MingHo AtomicStructurePrediction ofNanostructures,Clusters andSurfaces RelatedTitles Werner,W.S.M.(ed.) CharacterizationofSurfaces andNanostructures AcademicandIndustrialApplications 2008 ISBN:978-3-527-31760-8 Eftekhari,A.(ed.) Nanostructured Materialsin Electrochemistry 2008 ISBN:978-3-527-31876-6 Vedmedenko,E. CompetingInteractionsand PatternsinNanoworld 2007 ISBN:978-3-527-40484-1 Wilkening,G.,Koenders,L. NanoscaleCalibration StandardsandMethods DimensionalandRelatedMeasurements intheMicro-andNanometerRange 2005 ISBN:978-3-527-40502-2 Reich,S.,Thomsen,C.,Maultzsch,J. CarbonNanotubes BasicConceptsandPhysicalProperties 2004 ISBN:978-3-527-40386-8 Cristian V. Ciobanu, Cai-Zhuang Wang, and Kai-Ming Ho Atomic Structure Prediction of Nanostructures, Clusters and Surfaces TheAuthors AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained Dr.CristianV.Ciobanu inthesebooks,includingthisbook,tobefreeof ColoradoSchoolofMines errors.Readersareadvisedtokeepinmindthat DivisionofEngineering statements,data,illustrations,proceduraldetailsor 1610IllinoisStreet otheritemsmayinadvertentlybeinaccurate. GoldenColorado80401 LibraryofCongressCardNo.:appliedfor USA BritishLibraryCataloguing-in-PublicationData Dr.Cai-ZhuangWang Acataloguerecordforthisbookisavailablefromthe IowaStateUniversity BritishLibrary. AmesLab/DeptofPhysics BibliographicinformationpublishedbytheDeutsche 12PhysicsHall Nationalbibliothek Ames,Iowa50011 TheDeutscheNationalbibliothekliststhis USA publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Dr.Kai-MingHo Internet at < http:// dnb.d-nb.d e> . IowaStateUniversity AmesLab/DeptofPhysics #2013Wiley-VCHVerlagGmbH&Co.KGaA, 12PhysicsHall Boschstr.12,69469Weinheim,Germany Ames,Iowa50011 Allrightsreserved(includingthoseoftranslationinto USA otherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw. PrintISBN: 978-3-527-40902-0 ePDFISBN: 978-3-527-65505-2 ePubISBN: 978-3-527-65504-5 mobiISBN: 978-3-527-65503-8 oBookISBN: 978-3-527-65502-1 CoverDesign Adam-Design,Weinheim Typesetting ThomsonDigital,Noida,India PrintingandBinding MarkonoPrintMediaPteLtd, Singapore PrintedinSingapore Printedonacid-freepaper j V Contents Preface IX 1 TheChallengeofPredictingAtomicStructure 1 1.1 Evolution:RealityandAlgorithms 2 1.2 BriefHistoricalPerspective 4 1.3 ScopeandOrganizationofThisBook 6 References 7 2 TheGeneticAlgorithminReal-SpaceRepresentation 11 2.1 StructureDeterminationProblems 12 2.1.1 ClusterStructure 12 2.1.2 CrystalStructurePrediction 16 2.1.3 SurfaceReconstructions 19 2.1.4 RangeofApplications 21 2.2 GeneralProcedure 23 2.3 SelectionofParentStructures 24 2.4 CrossoverOperations 26 2.4.1 Cut-and-SpliceCrossoverinRealSpace 27 2.4.2 CrossoversandPeriodicBoundaryConditions 28 2.5 Mutations 30 2.5.1 Zero-PenaltyMutations 31 2.5.2 RegularMutations 31 2.6 UpdatingtheGeneticPool:SurvivaloftheFittest 33 2.7 StoppingCriteriaandSubsequentAnalysis 34 References 35 3 CrystalStructurePrediction 37 3.1 ComplexityoftheEnergyLandscape 38 3.2 ImprovingtheEfficiencyofGA 40 3.3 InteractionModels 41 3.3.1 ClassicalPotentials 41 3.3.2 AbInitioMethods 42 3.3.3 AdaptiveClassicalPotentials 42 j VI Contents 3.4 CreatingtheGeneration-ZeroStructures 44 3.5 AssessingStructuralDiversityofthePool 45 3.5.1 FingerprintFunctions 45 3.5.2 GeneralFeaturesofthePES 47 3.6 VariableComposition 48 3.7 Examples 51 3.7.1 IdentificationofPost-PyritePhaseTransitions 51 3.7.1.1 ComputationalDetails 52 3.7.1.2 ResultsandDiscussion 52 3.7.2 Ultrahigh-PressurePhasesofIce 57 3.7.2.1 ComputationalDetails 58 3.7.2.2 ResultsandDiscussion 59 3.7.3 StructureandMagneticPropertiesofFe–CoAlloys 63 3.7.3.1 ComputationalDetails 63 3.7.3.2 ResultsandDiscussion 64 References 67 4 OptimizationofAtomicClusters 71 4.1 Alloys,Oxides,andOtherClusterMaterials 71 4.2 OptimizationofSubstrate-SupportedClustersviaGA 73 4.3 GASolutiontotheThomsonProblem 81 References 85 5 AtomicStructureofSurfaces,Interfaces,andNanowires 87 5.1 ReconstructionofSemiconductorSurfacesasaProblemofGlobal Optimization 88 5.1.1 TheGeneticAlgorithmforSurfaceReconstructions:theCaseof Si(105) 89 5.1.1.1 ComputationalDetailsforSi(105) 89 5.1.1.2 ResultsforSi(105) 91 5.1.2 NewReconstructionsforaRelatedSurface,Si(103) 95 5.1.3 ModelReconstructionsforSi(337),anUnstableSurface:GAFollowed byDFTRelaxations 99 5.1.3.1 ResultsforSi(337)Models 101 5.1.3.2 Discussion 106 5.1.4 AtomicStructureofStepsonHigh-IndexSurfaces 107 5.1.4.1 SupercellGeometryandAlgorithmDetails 107 5.1.4.2 ResultsforStepStructuresonSi(114) 110 5.2 GeneticAlgorithmforInterfaceStructures 114 5.2.1 GAforGrainBoundaryStructureOptimization 115 5.2.2 StructuresGeneratedbyGA 116 5.2.3 GrainBoundaryEnergyCalculations 121 5.3 NanowireandNanotubeStructuresviaGAOptimization 123 5.3.1 PassivatedSiliconNanowires 123 5.3.2 One-DimensionalNanostructuresunderRadialConfinement 130 j Contents VII 5.3.2.1 Introduction 131 5.3.2.2 DescriptionoftheAlgorithm 132 5.3.2.3 ResultsforPrototypeNanotubes 135 5.3.2.4 Discussion 139 5.3.2.5 ConcludingRemarks 144 References 144 6 OtherMethodologiesforInvestigatingAtomicStructure 149 6.1 ParallelTemperingMonteCarloAnnealing 151 6.1.1 GeneralConsiderations 151 6.1.2 AdvantagesoftheParallelTemperingAlgorithmasaGlobal Optimizer 153 6.1.3 DescriptionoftheAlgorithm 154 6.2 BasinHoppingMonteCarlo 158 6.3 OptimizationviaMinimaHopping 160 6.4 TheMetadynamicsApproach 163 6.5 ComparativeStudiesbetweenGAandOtherStructuralOptimization Techniques 165 6.5.1 ReconstructionsofSi(114):ComparisonbetweenGAandPTMC 165 6.5.1.1 PTMCResults 166 6.5.1.2 GAResults 167 6.5.1.3 DFTCalculations 167 6.5.1.4 StructuralModelsforSi(114) 169 6.5.1.5 Discussion 174 6.5.1.6 ConcludingRemarks 175 6.5.2 CrystalStructurePrediction:ComparisonbetweenGAandMH 175 6.5.2.1 GAAppliedtoAlxSc1(cid:2)xAlloys 176 6.5.2.2 Boron 180 6.5.2.3 MinimaHopping 182 References 185 7 PerspectivesandOutlook 187 7.1 ExpansionthroughtheCommunity 187 7.2 FutureAlgorithmDevelopments 187 7.3 ProblemstoTackle–DiscoveryversusDesign 188 Index 191 j IX Preface Knowledgeoftheatomicstructureofamaterialssystemisthekeytounderstanding most of its properties, as well as the physical phenomena that can occur in that system.Evenwhenthebulkcrystalstructureofamaterialisknownorunderstood, thatknowledgedoesnotreadilyimplythatweknowthestructureofatomicclusters ornanowiresmadeofthatparticularmaterial.Wemightventureagoodguessfor clusters with verylarge numbers of atoms, orin thecase of verythick nanowires (whiskers),butmostofthenewandinterestingphenomenawillnothappeninthe regimes of large dimensions but at the nanoscale. At the nanoscale, often the structureandpropertiesofmaterialshavelittletodowiththestructureofthebulk crystallinematerial!Thisrealizationhasprovidedstrongmotivationforthedevel- opment of methodologies aimed at finding the atomic configuration of nano- structures. If we analyze deeper the field of atomic structure determination, we wouldrecognize,forexample,thatouroldcollegetextbooksprovidedonlylimited understandingofthecorrelationbetweenthecompositionofanalloyorcompound and itsequilibrium structure:this situation was described afewdecadesagoasa “continuingscandalinphysicalsciences”(JohnMaddox,1988).Thischallengealso sparkedsignificantandlong-standingeffortstopredictthecrystalstructurefromits composition.Thetwomainimpedimentstocrystalstructurepredictionandtothe determinationoftheatomicconfigurationofnanostructureshavebeenforalong timethelackofrealisticmodelsofatomicinteractionsandthelackofanefficient optimizationscheme.Bothoftheseimpedimentshavebynowbeenremediedfora respectable number of materials systems, and the time seems ripe to describe atomicstructurepredictioninabook.Wearedoingthathere,focusingmainlyon onemethod,thegeneticalgorithm.Geneticalgorithms“mimic”theprocessesofthe naturalevolutiontocreateprogressivelybetter-fitatomicstructures,andeventually find or predict their equilibrium configurations. While one may argue that the naturalevolutionisoverlysimplifiedinthiscase,practicehasshownthatitisthe simplification of dealing with real-space configuration (as opposed to their repre- sentation as genotype, akin to actual genes) that is responsible for obtaining solutions within a reasonable time and computational resources. The main purpose of this book is to offer a beginning practitioner (often a graduatestudent)adetailedbackgroundinthewaygeneticalgorithmsforatomic structure prediction work. As noted in the book, we use the terms “genetic” and j X Preface “evolutionary”interchangeably,althoughafewworkersinthefieldtendtoreserve the term “genetic” to describe the algorithm in the binary representation of the coordinatespace.Confusionsareunlikely,sincenowadaysthebinaryrepresentation is hardly used anymore. When this book was commissioned by Wiley-VCH, the focus was only on nanostructures, clusters, and surfaces, hence the cover title. However,whilethisprojectprogressed,sodidthestateofthefield–culminating withthegeneticalgorithmsolutionofoneofthemostimportantproblemsinsolid- statephysics,thatis,thepredictionofcrystalstructuresolelyfromtheknowledgeof itscomposition.Wehaveincludedthisimportantdevelopmentinthebook,sothe reader obtains a timely and up-to-date view of the field. Whileouraimistoprovideaclearunderstandingofhowthegeneticalgorithm worksandofitsstrengthsandsuccesses,thisbookisbynomeansareviewofall geneticalgorithmworkspublishedsofar.Giventherapiddevelopmentsinthefield, suchareviewwouldbebothtoolongandincomplete.Wehavestructuredthisbook asaprimerthatintertwinesbasicgeneraldescriptionsofthealgorithms(e.g.,the operations, the fitness functions, boundary conditions, where and how the algo- rithmcanbeapplied,etc.)withfull-detailapplicationstospecificsystemsincluding crystals(3D),surfaces(2D),nanowiresandnanotubes(1D),andcertainlyclusters (0D).Webelievethatthereaderwouldbenefitfromthisapproach,aswellasfrom thefactthatalltheexamplesorcasestudieshavebeenscrutinizedinthepeer-review process(astechnicaljournalpublications)andcontainvirtuallyallworkingdetailsof theapproachandoftheanalysis.Assuch,wehopethatthebookprovidessignificant understandingofthemethodsothatanyreaderinterestedinapplyingthealgorithm tohisorherproblemcandosowithrelativeeaseandconfidence–whetherornot his/her problem has already been covered in the book. Throughouttheyears,wehavebeenfortunatetoworkwithanumberoffaculty colleagues, postdoctoral associates, and graduate students from Ames Laboratory, IowaStateUniversity,andColoradoSchoolofMines,aswellasfrommanyother institutions. The work that is described in most detail (i.e., the full-detail applica- tions) in this book has been performed alongside with them, and we gratefully recognize them here: R.M. Briggs, T.-L. Chan, F.-C. Chuang, T. Davies, D.M. Deaven, G.H. Gilmer, B. Harmon, M. Ji, B. Liu, N. Lu, D.E. Lytle, D.P. Mehta, J.R. Morris, M.C. Nguyen, C. Predescu, J.-L. Rodriguez-Lopez, V.B. Shenoy, K. Umemoto, R.M. Wentzcovitch, S. Wu, J. Zhang, and X. Zhao. Wethankthemfortheirworkandinsights,andwelookforwardtoourcontinued collaborations.Lastbutnotleast,wethankverymuchtheeditorofPhysicalSciences BooksatWiley-VCH,NinaStadthaus,whohasguidedthisprojectwithunmatched professionalism, patience, and dedication. Golden, CO Cristian V. Ciobanu Ames, IA Cai-Zhuang Wang Ames, IA Kai-Ming Ho September 2012 j 1 1 TheChallengeofPredictingAtomicStructure Theatomicstructureisthemostimportantpieceofinformationthatisnecessary whenstudyingthepropertiesofcrystals,surfaces,interfaces,ornanostructures.If the bulk crystal structure of a material or compound is known, this may, under certain conditions, help in determining the structures of surfaces, clusters, or nanowires; however, such knowledge does not at all imply that we automatically knowthestructureofasurfaceorofananoparticlemadeoutofthatmaterial.Often the surfaces and nanostructures adopt very intriguing atomic configurations, especially when their size is small (e.g., small number of atoms for clusters, thindiameterfornanowires,etc.).Bynow,thestructureofmanycrystalsisalready known and usually taken for granted, sometimes to the point of considering a surface or a nanostructure as a simple truncation of the bulk material. As we seeinotherchapters,thisisrarelythecaseatthenanoscale:thestructureofatomic small clusters has little (usually nothing) to do with that of the bulk crystalline material! Comingbacktotheissueofbulkcrystalstructure,onfundamentalgrounds,we have to recognize that retrieving the crystal structure from a given material or compoundsolelyfromknowingitscompositionisnotaneasyorastraightforward task: what determines, say, molybdenum to “choose” a body-centered cubic structure at normal conditions of temperature and pressure, when palladium hasaface-centeredcubic(fcc)structureandrutheniumadoptsahexagonalclose- packedone?WhydoesNaCl,thecommonsalt,adoptastructureinwhichboththe fcc sublattices of Na and those of Cl are displaced along the side of the conventional cube, but CsCl adopts a different structure even though Cs is in thesamegroupasNaintheperiodictable?Granted,onecaneasilygiveapartial answertothisquestionongroundsthattheCsatom,althoughofsamevalenceas Na, has a larger ionic radius and therefore would tend to have more Cl atoms around it than Na has. Still, what made NaCl adopt its specific structure (Figure1.1)inthefirstplace?WhyarethesodiumatomsinNaClcrystalarranged in an fcc structure, could they not have chosen a different arrangement? Some decades ago, John Maddox [1] phrased the problem of determining the crystal AtomicStructurePredictionofNanostructures,ClustersandSurfaces, FirstEdition.CristianV.Ciobanu,Cai-ZhuangWang,andKai-MingHo. #2013Wiley-VCHVerlagGmbH&Co.KGaA.Published2013byWiley-VCHVerlagGmbH&Co.KGaA.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.