ebook img

Atomic fluorescence spectroscopic methods for ultratrace elemental analysis using a high-repetition rate tunable dye laser and furnace sample atomization PDF

217 Pages·1999·7.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Atomic fluorescence spectroscopic methods for ultratrace elemental analysis using a high-repetition rate tunable dye laser and furnace sample atomization

ATOMICFLUORESCENCESPECTROSCOPICMETHODSFORULTRATRACE ELEMENTALANALYSISUSINGAHIGH-REPETITIONRATETUNABLEDYE LASERANDFURNACESAMPLEATOMIZATION By RICARDOQ.AUCELIO ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1999 ACKNOWLEDGMENTS Iwouldfirstliketothankmyresearchadvisor,Dr.JamesD.Winefordner,for acceptingmeinhisgroupandforallhisguidanceandsupportthroughthepastfour years. IthasbeenatruelearningexperienceJimhasallowedmetoworkwithfreedom andallowedmetointeractwithpostdoctoralresearchersfromseveralpartsoftheworld anddifferentculturesandwithfellowgraduatecolleagues. Dr.BenjaminSmith(Ben) wasalsoafundamentalsupport,providingmeimportantsuggestionsandbackground. Manyfriendlypeopleparticipateddirectlyinthisworkandinotherprojectsin whichIhadtheopportunitytobeinvolved. IamgratefultoDr.NicoloOmeneto,Dr. EugeneWagner,Dr.EdisonBecerra,Dr.DavidPowell,Dr.IgorGomushkin,Dr.Scott Baker,Dr.BrianCastle,MelodyBi,MarkVilloria,ValeriaRubinandCelesteJohnson. I wouldliketoextendtheseacknowledgmentstoallotherpastandpresentmembersofthe group,speciallyDr.AndreaCroslyn,Dr.LeslieKing,Dr.RobinRussel,KrisIngenieri, MikeShepard,andGretchenPotts. IalsoextendthanksJeanneKarably,ToddProx, SteveMilles,andthepeoplefromtheUniversityofFloridaAnalyticalInstrumentation. Iamespeciallygratefultomyfamilyfortheirsupport. AndreiaGerkdeserves particularandspecialgratitude. InherIfoundtheloveandemotionalstrengththatI needed. n I am immensely thankful to Coordenacao de Aperfeicoamento de Pessoal de NivelSuperior(CAPES,Brasil)forthefinancialsupportthatallowedmetoobtainthe degree. FinancialsupportforthisworkwasprovidedbytheUnitedStatesDepartmentof Energy (DOE) and the EngineeringResearch Center(ERC) forParticle Science and TechnologyattheUniversityofFlorida. TABLEOFCONTENTS page ACKNOWLEDGMENTS i ABSTRACT vii CHAPTERS INTRODUCTION 1 1 NeedforUltratraceAnalysis 1 Laser-excitedAtomicFluorescence 2 IntentofDissertation 7 2 LASER-EXCITEDFLUORESCENCESPECTROMETRY 10 Introduction 10 FluorescenceExcitation-DetectionSchemes 12 GeneralFluorescenceFluxEquations 14 Laser-excitedAtomicFluorescence 16 OpticalSaturation 20 FluorescenceAnalyticalCurves 22 EfficiencyofDetection 24 SourcesofNoiseinLEAFS 27 ConcomitantScatter 27 StrayLight 28 BlackbodyEmission 29 MolecularFluorescence 30 Non-analyteAtomicFluorescence 30 OtherInterferencesandNoiseSources 30 3 SAMPLEATOMIZATION 31 Introduction 31 ElectrothermalAtomization 34 AtomizationMechanisms 39 iv MinimizationofInterferencesinElectrothermalAtomization 41 OptimalTemperatureProgram 42 StabilizedTemperaturePlatformFurnace 42 ChemicalModification .... 44 4 EXPERIMENTAL 46 Instrumentation 46 ExcitationSource 48 SampleAtomizer 55 Detection-signalprocessing-acquisitionSystem 55 WavelengthTunning 58 CleaningofGlassware 58 Procedures 58 AnalyteSolutions 58 OtherSolutions 59 Samples 59 Pre-conditioningoftheGraphite 61 MicrowaveDigestion 61 Theory 62 Instrumentation 65 Procedures 68 5 LASER-EXCITEDFLUORESCENCEOFGe,In,ANDPtINA GRAPHITEFURNACE 72 Briefoverviewoftheimportanceandcurrentmethodstodetermine ultratraceconcentrationsofGe,InandPt 72 ResultsandDiscussion 77 ChoiceoftheLaserRepetitionRate 77 OpticalSaturationConditions 78 ImagingConsiderations 81 ChoiceoftheFluorescenceAnalyticalSchemes 85 AtomizationTechniquesandFurnaceParameters 86 LimitingNoises 100 InfluenceofAcidsandBases 100 ChemicalModificationStudies 105 InfluenceofSaltsandPotentialInterferents 112 AnalyticalFiguresofMerit 114 SampleAnalysis 120 Conclusion 138 v 6 FILTERFURNACELASER-EXCITEDATOMICFLUORESCENCE SPECTROMETRYFORTHEDETERMINATIONOFLEADIN WHOLEBLOOD 140 Introduction 140 FilterFurnaceAtomization 142 ResultsandDiscussion 143 PermeabilityoftheFilterandFluorescenceTimeProfile 146 ComparisonofAtomizationTechniquesforBloodAnalysis 148 InfluenceoftheAmountofBloodintheRecoveryand Reproducibility 154 Conclusion 157 7 DETERMINATIONOFTHULIUMBYLEAFSINARHENIUM- LINEDTUBEATOMIZER 160 UltratraceDeterminationofThulium 160 MetallicAtomizers 162 Introduction 162 AtomizationMechanisms 164 IntentoftheChapter 165 ResultsandDiscussion 165 AnalyticalSchemeandLaserRepetitionRate 165 AtomizationandFurnaceParameters:AComparativeStudy BetweenDifferentTubeAtomizer 166 SampleAnalysis 185 Conclusion 187 8 FINALCOMMENTS 190 APPENDIX 193 LISTOFACRONYMS 193 REFERENCES 195 BIOGRAPHICALSKETCH 207 VI AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy ATOMICFLUORESCENCESPECTROSCOPICMETHODSFORULTRATRACE ELEMENTALANALYSISUSINGAHIGHREPETITIONRATETUNABLEDYE LASERANDFURNACESAMPLEATOMIZATION By RicardoQ.Aucelio July1999 Chairman:JamesD.Winefordner MajorDepartment:Chemistry The goal of this work was to develop ultrasensitive methods based on Electrothermalatomizationlaser-excitedatomicfluorescence(ETA-LEAFS)todetermine Ge,In,Pb,PtandTmincomplexsamplessuchasbiologicalandenvironmental. The ultimate goal was to achieve high sensitivity and high selectivity with little sample manipulationandsimplesamplecalibrationprocedures. For In, Ge, and Pt sensitive determination methods (femtogram limits of detection)usingastandardgraphitefurnacetechniqueweredeveloped. Highsensitivity wasachievedbytheproperchoiceofexperimentalparametersandinstrumentaldesign. Ahigh repetitionrate coppervaporpumped dye laserwas employedto probe more efficientlythetransientatompopulationgeneratedintheatomizer. Tubeatomizerswith frontilluminationdetectionschemewasemployedtoincreasethenumberoffluorescent vii atomsdetected,improvethedynamiclinearrangeanddecreaseinterferencesfromthe surrounding atmosphere. Experimental parameters were optimized to maximize the signaltonoiseratio. Specialcareconcerningimagingandsampleatomizationconditions wastakentominimizethenoiselevelreachingthedetectionsystem.Improvementsinthe sampleatomizationefficiencyandminimizationofinterferenceswereachievedbythe choice ofthebest atomizationtechnique, graphite material, use ofmatrix modifiers. Efforts are made to improve sensitivity and minimizing interferences by choosing betweenwallandplatformtechniques,andoptimizingfurnaceparameterstoeliminate samplematrixcomponents. ForPb, aporous graphite filterwas used to develop a filter furnace LEAFS methodallowingthedeterminationofthiselementbysimplecalibrationcurvemethodin wholebloodwithminimumsamplemanipulation. Agraphitetubelinedwithrheniumfoilwasemployedforthedeterminationof Tm.Theperformanceoftherheniumlinedtubewascomparedwithpyrolyticgraphite, W graphitetubescoatedwithcarbideformingelements,andgraphitetubeslinedwith and Ta foils. Abetterperformance interms ofsensitivity, reproducibility and long term stabilitywasachieved. viii CHAPTER 1 INTRODUCTION NeedforUltratraceElementalAnalysis Atomic spectrometry holds a central role in the monitoring ofbiological and environmentalsamplesaswellasinthecharacterizationoftechnologicallyinteresting highpuritymaterials. Theimpactoftraceelementsintheenvironmentandconsequently onman’shealthhasresultedinboththedevelopmentofanalyticalinstrumentationand techniqueswhicharesensitive,selective,accurate,reliableandthatareapplicabletoreal samples.1,2,3 Thenecessityofthedeterminationofultratracelevelsofelementsinthese samplesoftenrequireshighlysensitivestateofthearttechniquescapableoflimitsof detectionbetween0.1pgto0.1fgorevenlower.4 Inmanycases,especiallyinbiological monitoring,thechallengeisevengreatersinceverylimitedsamplesizesareavailable.5 Formostoftheelementspresentintraceamountsandcertainlyforthosepresent inultratraceamounts,verylittleisknownabouttheirexactbiologicalbehavior. The effectsofasubstanceinthehumanbodydependonitsrelativeconcentration. This meansthatatoxicelementcancertainlybeessentialatlowconcentrations;therefore,the analystmustnotonlymonitorthehigherconcentrationsatwhichacertainelementsare toxic, but also learnto determine the often low concentration levels at which these elements are essential.6 In biological systems, there is a growing interest in the 1 2 distributionofelementalcomponentsintissuesandevensinglecellsandmembranes. Thedeterminationofanelementattheconcentrationof1 ngg'1 inanindividualcell weighing1|ug,forexamplewouldrequireanabsolutelimitof1fg.5 Globalecologicalproblemshaveresultedinanincreasingawarenessandinterest intheanalysisofenvironmentalsamples. Concentrationsnogreaterthanpartperbillion or lower are ofconcern in all phases ofthe environment: air, water, soil and the biosphere,andincludeindigenousmetalsaswellasthosederivedfromanthropogenic activities. Highlysensitivetechniquesareespeciallynecessarytoestablish ‘baseline’ levelsofmanyelementsandtoattempttoreconstructthepastnaturaldistributionoftoxic pollutantsonaglobalscale.7 Inmaterialsciences,thereisagreatdemandforhighlysensitivetechniquessince propertiesofultrahighpuritymetals,highperformanceceramicsandmicroelectronic componentscanbeexpectedtobeaffectedbyforeignatomsorimpurityconcentrations oftheorderof10'12%.5 Laser-excitedAtomicFluorescence Laser-basedtechniquesare,inmanyoccasions,theonlychoiceforanalysisand areespeciallyindicatedintwosituations. First,formicroanalysis,wheretheabsolute detectionlimitofatechniqueistheimportantparameterratherthantheconcentration detectionlimit. Thisisasuitabledomainforlaser-basedtechniquesduetotheabilityto detectatomswithahighsensitivityinasmallvolumeduringashorttime.Second,when thesensitivity,selectivity,andfreedomfrommatrixinterferencesneedstobeenhanced.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.