Springer Series in CHEMICAL PHYSICS Springer-Verlag Berlin Heidelberg GmbH U.. Physics and Astronomy U.EU. .... http://www.springer.de/phys/ Springer Series in CHEMICAL PHYSICS Series Editors: F. P. Schafer J. P. Toennies W. Zinth The purpose of this series is to provide comprehensive up-to-date monographs in both well established disciplines and emerging research areas within the broad fields of chemical physics and physical chemistry. The books deal with both fun damental science and applications, and may have either a theoretical or an experi mental emphasis. They are aimed primarily at researchers and graduate students in chemical physics and related fields. 63 Ultrafast Phenomena XI Editors: T. Elsaesser, J.G. Fujimoto, D.A. Wiersma, and W. Zinth 64 Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei. By S.H. Patil and K.T. Tang 65 Fluorescence Correlation Spectroscopy Theory and Applications Editors: R. Rigler and E.S. Elson Series homepage - http://www.springer.de/physlbooks/chemical-physics/ Volumes 1-62 are listed at the end of the book S.R. Patil K. T. Tang Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei With 15 Figures , Springer Professor S.H. Pati! Department of Physiea Indian Inatitute ofTechnology Bombay 400076, India e-mail: [email protected] Professor K. T. Tang Department ofPhysiea Pacific Lutheran University Tacoma, Washington, 98447, USA e-mail: [email protected] Series Editors: Professor F.P. Schiifer Professor W. Zinth Max-Planck-Institut fiir Biophysikalische Chemie Universităt Miinchen, 37077 Gottingen-Nikolausberg, Germany Institut fiir Medizinische Optik Ottingerstrasse 67 Professor J.P. Toennies 80538 Miinchen, Germany Max-Planck-Institut fiir Stromungsforschung Bunsenstrasse 10 37073 Giittingen, Germany Ubrary of Congress Cataloging-in-Publication Data applied for. Die Deutsche Bibliothek -CIP-Einheitsaufnahme Patil, S. It: Asymptotic methods in quantum mechaniea : application to atoms, molecules and nuclei / S. K. Patil ; It T. Tang. -Berlin; Heidelberg ; New York; Barcelona ; Hong Kong ; Landon ; Milan ; Paris ; Singapore; Tokyo: Springer, zooo (Springer series in chemical physiea ; 64) ISBN 978-3-642-63137-5 ISBN 978-3-642-57317-0 (eBook) DOI 10.1007/978-3-642-57317-0 ISSN 0172-6218 ISBN 978-3-642-63137-5 This work is subject to copyright AII rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reule of iIIustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law ofSeptember 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are Iiable for prosecution under the German Copyright Law. o Springer-Verlag Berlin Heidelberg 2000 Originally published by Springer-Verlag Berlin Heidelberg New York in 2000 Softcover reprint of the hardcover 1s t edition 2000 The use of general descriptive name&, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general U5e. Typesetting: Camera-ready copies by the authors Cover concept: eStudio Calamar Steinen Cover production: design 60 production GmbH, Heidelberg SPIN: 10758176 57/3144/tr 5 4 3 2 1 o In loving memory of our parents Preface Quantum mechanics and the Schrodinger equation are the basis for the de scription of the properties of atoms, molecules, and nuclei. The development of reliable, meaningful solutions for the energy eigenfunctions of these many particle systems is a formidable problem. The usual approach for obtaining the eigenfunctions is based on their variational extremum property of the expectation values of the energy. However the complexity of these variational solutions does not allow a transparent, compact description of the physical structure. There are some properties of the wave functions in some specific, spatial domains, which depend on the general structure of the Schrodinger equation and the electromagnetic potential. These properties provide very useful guidelines in developing simple and accurate solutions for the wave functions of these systems, and provide significant insight into their physical structure. This point, though of considerable importance, has not received adequate attention. Here we present a description of the local properties of the wave functions of a collection of particles, in particular the asymptotic properties when one of the particles is far away from the others. The asymptotic behaviour of this wave function depends primarily on the separation energy of the outmost particle. The universal significance of the asymptotic behaviour of the wave functions should be appreciated at both research and pedagogic levels. This is the main aim of our presentation here. The asymptotic region plays a dominant role in determining quantities such as polarizabilities, dispersion coefficients, exchange energies and inter action potentials. We have attempted to emphasize the importance of the asymptotic behaviour by analysing a large number of such applications in the description of atomic, molecular, and nuclear properties, which should be helpful in developing a comprehensive understanding. We thank Prof. J. Peter Toennies for many discussions and supportive encouragement. Bombay, Tacoma S. H. Patil February 2000 K. T. Tang Contents 1. Introduction.............................................. 1 2. General Properties of Wave Functions . . . . . . . . . . . . . . . . . . . . 5 2.1 Asymptotic Form of Wave Functions. . . . . . . . . . . . . . . . . . . . . . 5 2.2 Asymptotic Perturbed Wave Function. . . . . . . . . . . . . . . . . . . . . 8 2.3 Wave Function for rij -t 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 2.4 Wave Function for rij and rik-t 0 ........................ 12 2.5 Local Satisfaction of Schrodinger Equation. . . . . . . . . . . . . . . .. 13 2.6 Variational Stationary Property. . . . . . . . . . . . . . . . . . . . . . . . .. 14 2.7 Variational Approach to Perturbations. . . . . . . . . . . . . . . . . . .. 15 2.8 Generalised Virial Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 2.9 A Simple Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 3. Two- and Three-Electron Atoms and Ions ......... . . . . . .. 21 3.1 A Simple Wave Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21 3.1.1 Energy.......................................... 22 3.1.2 Multipolar Potential Perturbation. . . . . . . . . . . . . . . . .. 23 3.1.3 Third Order Energy Shifts .................. : . . . . .. 25 3.2 Wave Functions Satisfying Cusp, Coalescence and Asymptotic Conditions. . . . . . . . . . . . . . . . . .. 25 3.2.1 Behaviour for ri -t o. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 3.2.2 Correlation Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 3.2.3 Results for the Unperturbed Ground State .......... 28 3.2.4 Multipolar Polarizabilities and Hyperpolarizabilities .. 31 3.2.5 Wave Functions for Excited States. . . . . . . . . . . . . . . . .. 33 3.3 Three-Electron Wave Functions. . . . . . . . . . . . . . . . . . . . . . . . .. 36 4. Polarizabilities and Dispersion Coefficients ............... 41 4.1 Polarizabilities......................................... 41 4.1.1 Perturbative Expression. . . . . . . . . . . . . . . . . . . . . . . . . .. 42 4.1.2 Hyperpolarizabilities.............................. 43 4.1.3 Dynamic Polarizabilities. . . . . . . . . . . . . . . . . . . . . . . . . .. 44 4.2 Dispersion Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 4.2.1 Relation to Dynamic Polarizabilities . . . . . . . . . . . . . . .. 48 X Contents 4.2.2 Three-Body Dispersion Coefficients. . . . . . . . . . . . . . . .. 49 4.3 Alkali Isoelectronic Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 4.3.1 The Wave Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 4.3.2 Polarizabilities................................... 52 4.3.3 Hyperpolarizabilities and Dispersion Coefficients ..... 56 4.4 Asymptotic Polarizabilities and Dispersion Coefficients. . . . .. 58 4.4.1 Asymptotic Polarizabilities ........... . . . . . . . . . . . .. 58 4.4.2 Pol ariz abilities of He and Ne Systems . . . . . . . . . . . . . .. 60 4.4.3 Asymptotic Behaviour of the Effective Energy ....... 62 4.4.4 Dispersion Coefficients for H, He and Ne ............ 65 5. Asymptotically Correct Thomas-Fermi Model Density. . .. 69 5.1 Thomas-Fermi Model. . .. . . .... .... .. .. . ... .. . . . .. . . . . .. 69 5.1.1 Statistical Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 5.1.2 WKB Approach... .... . . .. . . .. . . .. . . ... . .. . . . .. .. 70 5.2 Solution for the Thomas-Fermi Density. . . . . . . . . . . . . . . . . .. 71 5.3 Asymptotic Density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 72 5.4 Modified Density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 5.5 Applications........................................... 75 5.5.1 Expectation Values (r2n) . . . . . . . . . . . . . . . . . . . . . . . . .. 75 5.5.2 Multipolar Polarizabilities . . . . . . . . . . . . . . . . . . . . . . . .. 77 5.5.3 Dispersion Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . .. 77 6. Molecules and Molecular Ions with One and Two Electrons ............................. 85 6.1 Wave Functions for One-Electron Molecular Ions. . . . . . . . . .. 86 6.1.1 Cusp Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86 6.1.2 Asymptotic Behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . .. 87 6.2 Energies for One-Electron Molecular Ions. . . . . . . . . . . . . . . . .. 89 6.3 Wave Function for H2 and Het+ ......................... 91 6.3.1 Molecular Orbital Type of Wave Function. . . . . . . . . .. 91 6.3.2 Atomic Orbital Type of Wave Function ............. 92 6.3.3 General Wave Function. . . . . . . . . . . . . . . . . . . . . . . . . .. 93 6.3.4 Correlation Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94 6.4 Results for the Ground State. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 96 6.4.1 Ground State Energies. . . . . . . . . . . . . . . . . . . . . . . . . . .. 96 6.4.2 Discussion....................................... 98 7. Interaction of an Electron with Ions, Atoms, and Moiecuies105 7.1 Atomic Rydberg States .................................. 105 7.1.1 Perturbation Approach for Anti-symmetric Wave Functions ................. 105 7.1.2 The Perturbed Hamiltonian ....................... 107 7.1.3 Asymptotic Core Density and Density Matrix ........ 108 7.1.4 Penetration Energy ............................... 109 Contents XI 7.1.5 Exchange Energy ................................. 110 7.1. 6 Second Order Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 111 7.1. 7 Total Energy Shift ................................ 112 7.1.8 Results .......................................... 113 7.2 Electron-Atom and Electron-Molecule Scattering at High Energies ....................................... 115 7.2.1 Perturbation Series for the Scattering Amplitude ..... 115 7.2.2 Scattering Amplitude at High Energies .............. 117 7.2.3 Electron-Atom Scattering ......................... 118 7.2.4 Electron-Molecule Scattering ...................... 120 8. Exchange Energy of Diatomic Systems .................... 127 8.1 Exchange Energy of Dimer Ions .......................... 127 8.1.1 Exchange Energy of the Ht Molecular Ion by Surface Integral Method ........................ 128 8.1.2 Exchange Energy of Multielectron Dimer Ions ........ 133 8.2 Exchange Energy of Diatomic Molecules ................... 136 8.2.1 Exchange Energy of the H2 Molecule ............... 136 8.2.2 Exchange Energy of Multielectron Diatomic Molecules 144 9. Inter-atomic and Inter-ionic Potentials .................... 147 9.1 Exchange Energy and Exchange Integral in the Heitler-London Theory ............................ 148 9.2 Generalized Heitler-London Theory ....................... 150 9.2.1 Unsymmetrized (Polarization) Perturbation Method .. 150 9.2.2 Symmetry Imposed Generalised Heitler-London Equation ........................................ 151 9.2.3 Asymptotic Exchange Energy and Polarization Approximation .................... 153 9.3 Inter-atomic and Inter-ionic Potentials .................... 154 9.3.1 The 3 Ell, State Potential of the H2 Molecule ......... 154 9.3.2 The 2E ll, State Potentials of Alkali Dimer Cations .... 156 9.3.3 The Potential of Rare Gas Dimers .................. 157 10. Proton and Neutron Densities in Nuclei .................. 161 10.1 Semi-phenomenological Density .......................... 161 10.2 Determination of the Parameters ......................... 162 10.3 Results ................................................ 164 References .................................................... 169 1. Introduction In describing the non-relativistic properties of atoms, molecules, and nu clei with more than two particles, one encounters the difficult problem of analysing the many-particle Schrodinger equation. In the case of atoms and molecules, the interaction is Coulombic whereas in the case of nuclei, we only know the general form of the interaction potential, that it is strong and of short range. Faced with an almost insurmountable task of solving a non-separable, differential equation with many variables, one usually takes recourse to variational solutions. This approach emphasizes the extremum or stationary property which the energy eigenvalues have irrespective of the de tails of the interaction. However, while this approach provides reliable values for the energy eigenvalues, particularly the ground state energies, by itself it is not very efficient or useful in providing an insight into the structure of the wave functions, and interactions of the particles with each other or with external fields. Though the many-particle Schrodinger equation is very complicated in structure, it allows us to deduce some general properties of the wave functions. These properties follow from the general structure of the equation. They may be grouped into two classes. There are some properties of the wave functions and energies, which depend on the wave function over the entire domain. For example, the stationary property that the variation of the average value of the energy vanishes, (1.1 ) in the leading order, when I'¢') is an energy eigenstate, depends on the inte grals over the entire domain. These properties may be called global properties. Apart from the variational property of the energy, we have the virial theorem, generalizations of the virial theorem, relations which depend on the gauge in variance, all of which depend on integrals over the entire domain. Then there are properties of wave functions which are specific to local domains. For ex ample when one of the particles is far away from all others, it experiences essentially the Coulombic potential due to the remaining net core charge, and its energy is the separation energy of the last particle. Therefore the asymp totic form of the wave function is determined by the separation energy and the core charge. On the other hand, when two of the particles are close to S. H. Patil et al., Asymptotic Methods in Quantum Mechanics © Springer-Verlag Berlin Heidelberg 2000